• Title/Summary/Keyword: Godunov scheme

Search Result 11, Processing Time 0.022 seconds

A HIGH-RESOLUTION VAN LEER-TYPE SCHEME FOR A MODEL OF FLUID FLOWS IN A NOZZLE WITH VARIABLE CROSS-SECTION

  • Cuong, Dao Huy;Thanh, Mai Duc
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.141-175
    • /
    • 2017
  • We present a high-resolution van Leer-type numerical scheme for the isentropic model of fluid flows in a nozzle with variable cross-section. Basically, the scheme is an improvement of the Godunov-type scheme. The scheme is shown to be well-balanced, as it can capture exactly equilibrium states. Numerical tests are conducted which include comparisons between the van Leer-type scheme and the Godunov-type scheme. It is shown that the van Leer-type scheme achieves a very good accuracy for initial data belong to both supersonic and supersonic regions, and the exact solution eventually possesses a resonant phenomenon.

SPLITTING TECHNIQUE AND GODUNOV-TYPE SCHEMES FOR 2D SHALLOW WATER EQUATIONS WITH VARIABLE TOPOGRAPHY

  • Dao Huy Cuong;Mai Duc Thanh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.969-998
    • /
    • 2024
  • We present numerical schemes to deal with nonconservative terms in the two-dimensional shallow water equations with variable topography. Relying on the dimensional splitting technique, we construct Godunov-type schemes. Such schemes can be categorized into two classes, namely the partly and fully splitting ones, depending on how deeply the scheme employs the splitting method. An upwind scheme technique is employed for the evolution of the velocity component for the partly splitting scheme. These schemes are shown to possess interesting properties: They can preserve the positivity of the water height, and they are well-balanced.

NUMERICAL ANALYSIS ON A SPHERICALLY SYMMETRIC UNDERWATER EXPLOSION USING THE ALE GODUNOV SCHEME FOR TWO-PHASE FLOW (이상유동에 대한 ALE Godunov법을 이용한 구대칭 수중폭발 해석)

  • Shin S.;Kim I.C.;Kim Y.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.29-35
    • /
    • 2006
  • A code is developed to analyze a spherically symmetric underwater explosion. The arbitrary Lagrangian-Eulerian(ALE) Godunov scheme for two-phase flow is used to calculate numerical fluxes through moving control surfaces. For detonation gas of TNT and liquid water, the Jones-Wilkins-Lee(JWL) equation of states and the isentropic Tait relation are used respectively. It is suggested to use the Godunov variable to estimate the velocity of a material interface. The code is validated through comparisons with other results on the gas-water shock tube problem. It is shown that the code can handle generation of discontinuity and recovering of continuity in the normal velocity near the material interface during shock waves interact with the material interface. The developed code is applied to analyze a spherically symmetric underwater explosion. Repeated transmissions of shock waves are clearly captured. The calculated period and maximum radius of detonation gas bubble show good agreements with experimental and other numerical results.

Numerical simulation and development of scheme for compressible flows(Application of BGK method) (압축성 유동의 수치해석 및 수치해법 개발(BGK 기법의 적용))

  • 신동신;김종암;노오현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • BGK schemes are developed by improving the standard BGK numerical method. Shceme 1 uses the Osher's Godunov type solution and scheme 2 are developed to overcome the problems of scheme 1.The improved schemes show many unique properties such as entropy condition, positivity condition, higher order gas evolution model, which lead to an high degree of robustness and accuracy. The scheme 2 especially overcomes the shortcomings of the scheme 1 and posseses many superior properties that cannot be found ohter numerical schemes, and is expected to apply various problems with high accuracy and robustness.

  • PDF

Calculations of 3D Euler Flows around an Isolated Engine/Nacelle (비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석)

  • Kim S. M.;Yang S. S.;Lee D. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method (ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks (충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형)

  • Lee, Gil-Seong;Lee, Seong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.279-290
    • /
    • 1998
  • The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid.

  • PDF

Numerical Simulation of the Tidal Bores on the Qiantang River

  • Hui W.H.;Pan Cun-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.221-223
    • /
    • 2003
  • The tidal bores of the Qiantang River on the East coast of China are simulated numerically based on the shallow water theory. The governing equations, which were traditionally formulated using water depth, are formulated in terms of water surface level, and the fractional-step method is applied in conjunction with a Godunov-type scheme. In addition, the source terms due to bottom gradient are discretized centrally to exactly balance the flux terms. Our numerical simulation produces tidal bores in excellent agreement with field measurements.

  • PDF

Study on the Phase Interface Tracking Numerical Schemes by Level Set Method (Level Set 방법에 의한 상경계 추적 수치기법 연구)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.116-121
    • /
    • 2006
  • Numerical simulations for dendritic growth of crystals are conducted in this study by the level set method. The effect of order of difference is tested for reinitialization error in simple problems and authors founded in case of 1st order of difference that very fine grids have to be used to minimize the error and higher order of difference is desirable to minimize the reinitialization error The 2nd and 4th order Runge-Kutta scheme in time and 3rd and 5th order of WENO schemes with Godunov scheme are applied for space discretization. Numerical results are compared with the analytical theory, phase-field method and other researcher's level set method.

  • PDF

About influence of the choice of numerical flow in the DG method for the solution of problems with shock waves

  • Mikhail M., Krasnov;Marina E., Ladonkina;Olga A., Nekliudova;Vladimir F., Tishkin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.463-477
    • /
    • 2022
  • This study compares various ways of calculating flows for the problems with the presence of shock waves by first-order schemes and higher-order DG method on the tests from the Quirk list, namely: Quirk's problem and its modifications, shock wave diffraction at a 90 degree corner, the problem of double Mach reflection. It is shown that the use of HLLC and Godunov's numerical schemes flows in calculations can lead to instability, the Rusanov-Lax-Friedrichs scheme flow can lead to high dissipation of the solution. The most universal in heavy production calculations are hybrid schemes flows, which allow the suppression of the development of instability and conserve the accuracy of the method.