• Title/Summary/Keyword: Goat ${\beta}$-casein

Search Result 16, Processing Time 0.023 seconds

Regulatory Sequences in the 5' Flanking Region of Goat β-Casein Gene

  • Huang, Mu-Chiou;Chao, Jiunn-Shiuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1628-1633
    • /
    • 2001
  • A goat ${\beta}$-casein gene was cloned and sequenced. Our previous study had determined the nucleotide sequences of the 5' flanking region and the structural gene including all 9 exons. In the present study, investigations were done on the regulatory sequences in the 5' flanking region of the goat ${\beta}$-casein gene by aligning and comparing it with the same gene from other mammals. The results showed that -200/-1 bp of the 5' flanking sequences contained six conserved clusters, in which the sites of gene expression regulated by the transcription factor and hormone might exist. It showed that fourteen glucocorticoid receptor elements, two cAMP responsive elements, two SV40 virus enhancer core sequences, two OCT-1 binding elements and one CTF/NF-1 binding element were dispersed in the 5' flanking region of goat ${\beta}$-casein gene. Our findings are perhaps valuable for the elucidation of the molecular mechanisms that control the expression of the goat ${\beta}$-casein gene.

Characteristics of β-casein Gene using the PCR Technique in Korean Native Goat (PCR 기법을 이용한 한국재래산양 β-casein 유전자의 특성)

  • Kim, Ji-Ae;Ryoo, Seung-Heui;Yu, Sung-Lan;Lee, Jun-Heon;Seo, Gil-Woong;Kim, Sun-Kyun;Sang, Byung-Chan
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This study was performed to provide the basic data for preservation and improvement of genetic resources according to finding genetic construction obtained from analysis of genetic characteristics of $\beta$-casein gene in Korean Native goat and Saanen using the PCR-RFLP. This study confirmed the amplified products of 481bp fragments obtained from the amplification of $\beta$-casein loci by PCR. The $\beta$-casein AB genotype showed 481, 284 and 197bp, and $\beta$-casein BB genotype showed 284 and 197bp fragments in Korean Native goat and Saanen. The frequencies of $\beta$-casein genotype in Korean Native goat were 6.25 and 93.75% for AA and AB and the frequencies of $\beta$-casein genotype in Saanen were 57.14 and 42.86% for AA and AB types. The frequencies of $\beta$-casein A and B alleles were 0.031 and 0.969 in Korean Native goat and the frequencies of $\beta$-casein A and B alleles are 0.286 and 0.714 in Saanen, respectively. The nucleotide sequence of $\beta$-casein gene of Korean Native goat was 97.71% higher homology with 11 nucleotide sequences difference of that of goat reported in GeneBank (M90556). Therefore, this study of molecular genetic characteristics by the analysis of genetic polymorphism and sequencing for $\beta$-casein gene should be used as basic and applying data for preservation and improvement of genetic resources in Korean Native goat breeding.

  • PDF

Hydrolysis Characteristics of Goat Milk $\beta-Casein$ by Enzyme and Angiotensin Converting Enzyme Inhibition Effects of Hydrolysate (산야유 $\beta-Casein$의 효소 가수분해 특성과 가수분해물의 Angiotensin Converting Enzyme 저해 효과)

  • Park Yong-Kuk;Kwon Il-Kyoung;Kim Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.238-243
    • /
    • 2005
  • This study was carried out to understand hyrolytic characteristics of $\beta-casein$ by enzyme in goat milk and to measure the inhibition effect of the ACE of the hydrolysate. In order to conduct the experiment, $\beta-casein$ of goat milk was separated using Mono S HR 5/5, a cation exchange column. The separated $\beta-casein$ was treated with trypsin of animal hydrolysis enzymes, in an effort to verify the characteristics of hydrolysis. The inhibition activity of ACE was measured and the results are as follows. By analyzing the hydrolysate separated from the trypsin-processed $\beta-casein$ of goat milk, the inhibition effect of the ACE was measured trypsin-hydrolyzed $\beta-casein$ demonstrated a $25.36\pm0.79\%$ of inhibition effect and the $IC_{50}$ of the hydrolysate from the trypsin-processed $\beta-casein$ reached $308.7\pm2.77({\mu}g/mL)$.

Hypoallergenic and Physicochemical Properties of the A2 β-Casein Fractionof Goat Milk

  • Jung, Tae-Hwan;Hwang, Hyo-Jeong;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Ahn, Ji-Yun;Jeon, Woo-Min;Han, Kyoung-Sik
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.940-947
    • /
    • 2017
  • Goat milk has a protein composition similar to that of breast milk and contains abundant nutrients, but its use in functional foods is rather limited in comparison to milk from other sources. The aim of this study was to prepare a goat A2 ${\beta}$-casein fraction with improved digestibility and hypoallergenic properties. We investigated the optimal conditions for the separation of A2 ${\beta}$-casein fraction from goat milk by pH adjustment to pH 4.4 and treating the casein suspension with calcium chloride (0.05 M for 1 h at $25^{\circ}C$). Selective reduction of ${\beta}$- lactoglobulin and ${\alpha}_s$-casein was confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography. The hypoallergenic property of A2 ${\beta}$-casein fraction was examined by measuring the release of histamine and tumor necrosis factor alpha from HMC-1 human mast cells exposed to different proteins, including A2 ${\beta}$-casein fraction. There was no significant difference in levels of both indicators between A2 ${\beta}$-casein treatment and the control (no protein treatment). The A2 ${\beta}$-casein fraction is abundant in essential amino acids, especially, branched-chain amino acids (leucine, valine, and isoleucine). The physicochemical properties of A2 ${\beta}$-casein fraction, including protein solubility and viscosity, are similar to those of bovine whole casein which is widely used as a protein source in various foods. Therefore, the goat A2 ${\beta}$-casein fraction may be useful as a food material with good digestibility and hypoallergenic properties for infants, the elderly, and people with metabolic disorders.

Characterization of Double Transgenic Mice Harboring Both Goat $\beta$-casein/hGH and Goat $\beta$-casein/hG-CSF Hybrid Genes

  • Oh, Keon-Bong;Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.191-198
    • /
    • 2009
  • In an attempt to simultaneously produce two human proteins, hGH and hG-CSF, in the milk of transgenic mice, we constructed goat $\beta$-casein-directed hGH and hG-CSF expression cassettes individually and generated transgenic mice by co-injecting them into mouse zygotes. Out of 33 transgenic mice, 29 were identified as double transgenic harboring both transgenes on their genome. All analyzed double transgenic females secreted both hGH and hG-CSF in their milks. Concentrations ranged from 2.1 to $12.4\;mg/m{\ell}$ for hGH and from 0.04 to $0.13\;mg/m{\ell}$ for hG-CSF. hG-CSF level was much lower than hGH level but very similar to that of single hG-CSF mice, which were introduced with hG-CSF cassette alone. In order to address the causes of concentration difference between hGH and hG-CSF in milk, we examined mRNA level of hGH and hG-CSF in the mammary glands of double transgenic mice and tissue specificity of hG-CSF mRNA expression in both double and single transgenic mice. Likewise protein levels in milk, hGH mRNA level was much higher than hG-CSF mRNA, and hG-CSF mRNA expression was definitely specific to the mammary glands of both double and single transgenic mice. These results demonstrated that two transgenes have distinct transcriptional potentials without interaction each other in double transgenic mice although two transgenes co-integrated into same genomic sites and their expressions were directed by the same goat $\beta$-casein promoter. Therefore goat $\beta$-casein promoter is very useful for the multiple production of human proteins in the milk of transgenic animals.

  • PDF

The Commercial Value of Goat Milk in Food Industry (산양유의 산업적 이용 가치에 대한 연구 고찰)

  • Jung, Tae-Hwan;Hwang, Hyo-Jeong;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Shin, Kyung-Ok;Han, Kyoung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In many countries, goat milk is an excellent nutrient source and is less allergenic for children and the elderly. The casein composition of goat milk consists largely of ${\beta}$-casein and lower amounts of ${\alpha}_{s1}$-casein, which may interfere with digestion by forming solid curds in the human stomach. Goat milk contains small fat globules and large amounts of medium chain fatty acids for, better digestibility, as well as abundant minerals and vitamins with high absorption rates. Recently, the medical benefits of goat milk in different human disorders have been recognized, leading to an increased interest in developing functional foods with goat milk, particularly for individuals with malabsorption syndrome. However, the physiological and biochemical properties of goat milk are largely unknown. We review the importance of goat milk as a potential functional food by providing scientific evidence confirming its health benefits.

Integration and Expression of Goat ${\beta}-Casein/hGH$ Hybrid Gene in a Transgenic Goat

  • Lee, Chul-Sang;Lee, Doo-Soo;Fang, Nan-Zhu;Oh, Keon-Bong;Shin, Sang-Tae;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.293-299
    • /
    • 2006
  • In order to generate transgenic goats expressing human growth hormone (hGH) in their mammary glands, goat ${\beta}-Casein/hGH$ hybrid gene was introduced into goat zygotes by pronuclear microinjection. DNA-injected embryos were transferred to the oviduct of recipients at 2-cell stage or to the uterus at morula/blastocyst stage after cultivation in glutathione-supplemented mSOF medium in vitro. Pregnancy and survival rate were not significantly different between 2-cell embryos and morula/blastocysts transferred to oviduct and uterus, respectively. One transgenic female goat was generated from 153 embryos survived from DNA injection. Southern blot analysis revealed that the transgenic goat harbored single-copy transgene with a partial deletion in its sequences. Despite of the partial sequence deletion, the transgene was successfully expressed hGH at the level of $72.1{\pm}15.1{\mu}g/ml$ in milk throughout lactation period, suggesting that the sequence deletion had occurred in non-essential part of the transgene for the transgene expression. Unfortunately, however, the transgene was not transmitted to her offspring during three successive breeding seasons. These results demonstrated that goat ${\beta}-casein/hGH$ gene was integrated into the transgenic goat genome in a mosaic fashion with a partial sequence deletion, which could result in a low level expression of hGH and a failure of transgene transmission.

Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2)

  • Lee, Sang-Mi;Kim, Hye-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, ${\beta}$-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine ${\beta}$-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine ${\beta}$-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP ${\beta}$. In addition, the first intron of the porcine ${\beta}$-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP ${\beta}$, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine ${\beta}$-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine ${\beta}$-casein gene. The ${\beta}$-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine ${\beta}$-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine ${\beta}$-casein gene activity.

Expression of Human Serum Albumin in Milk of Transgenic Mice Using Goat β-casein/Human Serum Albumin Fusion Gene

  • Wu, H.T.;Chou, C.K.;Huang, M.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.743-749
    • /
    • 2004
  • The gene encoding human serum albumin (HSA) was cloned from human liver cDNA library by PCR. The HSA cDNA in size of 2,176 bp, including 1,830 bp of open reading frame, was cloned into the plasmid carried with the 5'flanking sequence of goat $\beta$-casein gene (-4,044 to +2,025 bp) to get a tissue specific expression vector in mammary gland named pGB562/HSA (12.5 kb). A 9.6 kb DNA fragment in which the sequence is in order of goat $\beta$-casein gene regulatory sequence, HSA cDNA and SV40 polyadenylation signals was isolated from the pGB562/HSA by SacI and DraIII cutting, and used to microinject into the pronuclei of mouse fertilized eggs to produce transgenic mice. Three transgenic mice (2 female and 1 male) were identified by PCR and dot Southern blot analysis. The copy numbers of integrated transgene were more than 10 copies in line #21 and #26 as well as over 50 copies in line #31 of transgenic mice. HSA protein collected from the milk of lactating transgenic mice was confirmed by immuno-detection of Western and slot blot. The concentrations of HSA in the milk were from 0.05 to 0.4 mg/ml. An obvious antigen and antibody conjugate could be observed in immunohistochemical stain of mammary gland tissue from lactating day 11 of HSA transgenic mice. The transmission of transgene and its expression was recognized according to the results of RT-PCR and sequences analyses of their progeny.

Analysis of Changes in Colostrum Proteins by Mammalian Species (포유류의 종에 따른 초유 단백질의 변화에 대한 분석)

  • Kim, Seung Hee;Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • There have been numerous reports indicating that milk proteins influence immune functions. Colostrum refers to the breast milk of mammals, secreted starting from the fourth or fifth day after delivery. It has abundant nutrition for the survival of newborn infants. Most importantly, it contains bioactive substances with growth-stimulating and antibiotic, functions. Thus, the colostrum has various physiological roles. This study measured the differences in the composition of colostrum derived from dairy cattle, hanwoo, porcine, and goat sources. The results showed that immunoglobulin, lactoferrin, lactoperoxidase, serum albumin, IgG heavy chain, and IgG light chain were significantly higher in the colostrum of dairy cattle, hanwoo, and goats, but low in porcine colostrum. There was no significant difference in ${\alpha}_{S2}$-casein, ${\alpha}_{S1}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\beta}$-lactoglobulin, and ${\alpha}$-lactalbumin contents until seven days after birth. However, porcine colostrum showed high contents of all proteins from the first day to the second day after delivery.