• Title/Summary/Keyword: Gn protein

Search Result 50, Processing Time 0.026 seconds

Apoptosis and Peripheral Benzodiazepin Receptor (PBR) Expression in Human Granulosa-Luteal Cells by GnRH-agonist (GnRH-agonist에 의한 인간 과립-황체화 세포의 세포사멸과 PBR 단백질의 발현)

  • Kim, Sei-Kwang;Youm, Yun-Hee;Yoon, Jeong-Mi;Bai, Sang-Wook;Yang, Hyun-Won;Cho, Dong-Jae;Yoon, Yong-Dal;Song, Chan-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.2
    • /
    • pp.83-94
    • /
    • 2004
  • Objective: To investigate whether GnRH-agonist (GnRH-Ag) using in IVF-ET affects apoptosis of human granulosa-luteal cells and expression of peripheral benzodiazepine receptor (PBR) protein involved in the apoptosis of the cells. Methods: Granulosa-luteal cells obtained during oocyte retrieval were cultured and treated with $10^{-5}M$ GnRH-Ag. Apoptosis of the cells by the treatment was confirmed using DNA fragmentation analysis 24 h after culture. The presence of PBR protein within the cells was examined by immunofluorescence staining and the expression of the protein was analyzed by Western blotting. In addition, it was measured for progesterone and nitric oxide (NO) produced by granulosa-luteal cells after GnRH-Ag treatment. To evaluate the relationship between NO production and PBR expression, sodium nitroprusside (SNP) as a NO donor was added in media and investigated the expression of PBR protein by Western blotting. Results: Apoptosis increased in the granulosa-luteal cells 24 h after GnRH-Ag treatment, whereas the expression of PBR protein significantly decreased. Furthermore, the production of progesterone and nitric oxide (NO) by the cells significantly fell from 12 h after the treatment. In the results of Western blotting after SNP treatment, the expression of PBR protein increased in the treatment with SNP alone to the granulosa-luteal cells, but was suppressed in the treatment with GnRH-Ag and SNP. Additionally, the staining result of PBR protein in the cells showed the even distribution of it through the cell. Conclusion: These results demonstrate that GnRH-Ag treatment induces apoptosis, decreasing expression of PBR protein and NO production in human granulosa-luteal cells. The present study suggests that one of the apoptosis mechanism of human granulosa-luteal cells by GnRH-Ag might be a signal transduction pathway via NO and PBR.

Expression and Distribution of the Guanine Nucleotide-binding Protein Subunit Alpha-s in Mice Skin Tissues and Its Association with White and Black Coat Colors

  • Yin, Zhihong;Zhao, Xin;Wang, Zhun;Li, Zhen;Bai, Rui;Yang, Shanshan;Zhao, Min;Pang, Quanhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1392-1397
    • /
    • 2016
  • Guanine nucleotide-binding protein subunit alpha-s ($Gn{\alpha}s$) is a small subunit of the G protein-couple signaling pathway, which is involved in the formation of coat color. The expression level and distribution of $Gn{\alpha}s$ were detected by quantitative real-time-polymerase chain reaction (qPCR), western blot, and immunohistochemistry to investigate the underlying mechanisms of coat color in white and black skin tissues of mice. qPCR and western blot results suggested that $Gn{\alpha}s$ was expressed at significantly higher levels in black mice compared with that of white mice, and transcripts and protein possessed the same expression in both colors. Immunohistochemistry demonstrated $Gn{\alpha}s$ staining in the root sheath and dermal papilla in hair follicle of mice skins. The results indicated that the $Gn{\alpha}s$ gene was expressed in both white and black skin tissues, and the expression level of $Gn{\alpha}s$ in the two types of color was different. Therefore, $Gn{\alpha}s$ may be involved in the coat color formation in mice.

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Gonadotropin-releasing Hormone and Its Receptor as a Therapeutic Concept in the Progression of Epithelial Ovarian Cancer

  • Kim, Ki-Yon;Choi, Kyung-Chul
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Ovarian cancer is a significant cause of cancer-related death in women, but the main biological causes remain open questions. Hormonal factors have been considered to be an important determinant causing ovarian cancer. Recent studies have shown that gonadotropin-releasing hormone (GnRH)-I and its analogs have clinically therapeutic value in the treatment of ovarian cancer. In addition, numerous studies have shown that the potential of GnRH-II in normal reproductive system or reproductive disorder. GnRH-I receptors have been detected in approximately 80% of ovarian cancer biopsy specimens as well as normal ovarian epithelial cells and immortalized ovarian surface epithelium cells. GnRH-II receptors have also been found to be more widely expressed than GnRH-I receptors in mammals, suggesting that GnRH receptors may have additional functions in reproductive system including ovarian cancer. The signal transduction pathway following the binding of GnRH to GnRH receptor has been extensively studied. The activation of protein kinase A/C (PKA/PKC) pathway is involved in the GnRH-I induced anti-proliferative effect in ovarian cancer cells. In addition, GnRH-I induced mitogen-activated protein kinase (MAPK) activation plays a role in anti-proliferative effect and apoptosis in ovarian cancer cells and the activation of transcriptional factors related to cellular responses. However, the role of GnRH-I and II receptors, there are discrepancies between previous reports. In this review, the role of GnRH in ovarian cancer and the mechanisms to induce anti-proliferation were evaluated.

Effect of Guar Gum and Calcium Supplement on Nutritional Bioavailabilities in the Rats (식이중 Guar Gum과 Calcium 보충이 흰쥐의 체내 영양소 이용율에 미치는 영향)

  • 김상연
    • Journal of Nutrition and Health
    • /
    • v.26 no.1
    • /
    • pp.21-33
    • /
    • 1993
  • This balance study was performed to investigate nutritional effects of guar gum and calcium supplement for 8 weeks. 36 male rate of Sprague-Dawley strain weighing 50g were blocked into six groups : 5CN, 5GN, 5CS, 5GS, FFN, 10GN. Food intake, body weight gains, FER, PER, bioavailabity of energy, protein, fat, Ca and P, and Ca & P content of femur and kidney was measured. The results obtained in this study were summarized as follows: (1) Feed intake, weight gains, FER, PER and bioavailabilities of protein and P and the contents of Ca & P in femur of 5GB were significantly higher than 5CN and 5CS (p<0.05) but was not significant different with those 5GN. Fat bioavailabilities of 5GS was significantly lower than 5CN and 5GN (p<0.05) but was not significant different with those of 5CS. Ca contents of kidney of 5GS was significantly higher than 5CN and 5GN(p<0.05) but was not significant different with those of 5SC. (2) According to guar gum levels feed intake. FER and PER were not sifgnificantly different among groups but body weight gains, bioavailabilities of energy, protein, fat and Ca, Ca & P content of femur was significantly decreased (p<0.05). Bioavailabilities of P was significantly increased according to the guar gum levels (p<0.05). Ca contents in Kidney of 10GN was significantly higher those of 5GN(p<0.05) but P contents in kidney was not significant difference by guar gum levels. Therefore 5% supplemental guar gum in diet of obese man and diebetics could be recommended. But it should be careful in using 10% guar gum in diet.

  • PDF

Involvement of Amino Acids Flanking Glu7.32 of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

  • Wang, Chengbing;Oh, Da Young;Maiti, Kaushik;Kwon, Hyuk Bang;Cheon, Jun;Hwang, Jong-Ik;Seong, Jae Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • The Glu/$Asp^{7.32}$ residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with $Arg^8$ of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/$Asp^{7.32}$ also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking $Glu^{7.32}$ are important for antagonist as well as agonist selectivity.

Effect of Gonadotropin on the Expression of GnRH and GnRH mRNA in Rat Ovary (성선자극호르몬이 흰쥐 난소의 GnRH와 GnRH mRNA의 발현에 미치는 영향)

  • Paik, Won-Young;Chung, Pa-Jin;Park, Shin-Keun;Kim, Wan-Young;Lee, Jong-Hak;Kim, Jong-Hwa;Kim, Myeong-Ok;Choi, Wan-Sung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.121-130
    • /
    • 1994
  • Expression of gonadotropin releasing hormone(GnRH) has been described in the rat ovary. It remains, however, unkown whether GnRH is synthesized as a prohormone. Therefore, this study was performed to verify the expression of pro-GnRH by in situ hybridization and further to investigate the effect of gonadotropin on GnRH or GnRH mRNA in rat ovary by immunohistochemical and in situ hybridization techniques. Adult female Sprague-Dawely rats were used and the estrous cycle was synchronized by intraperitoneal injection of pregnant mare's serum gonadotropin(PMSG). Ovaries were fixed with 4% paraformaldehyde and embedded with G.C.T. compound and cut by cryostat. For immunohistochemistry, avidin-biotin peroxidase complex(ABS) method was employed and for in situ hybridization, $^{35}S$-end labeled oligonucleotide was used and followed by autoradiography. By in situ hybridization using GnRH oligomer and GAP(GnRH associated protein) oligomer, GnRH mRNA and GAP mRNA were co-localized in the fullicular cells, luteal cells, interstitial cells and theca cells. GnRH or GnRH mRNA signals in the ovary increased by human chorionic gonadotropin(hCG) injection. At the 3 and 6 hrs after hCG injection, the number of GnRH and GnRH mRNA containing cells increased rapidly and the density of GnRH and GnRH mRHA culminated at 9 hrs after heG injection. With the follicular development, the high expression of GnRH and GnRH mRNA was also observed within the follicles. After ovulation, the density of GnRH or GnRH mRNA decreased in the follicles but increased in the corpus lutea.

  • PDF

Effect of Gonadotropin Releasing Hormone-Agonist on Apoptosis of Luteal Cells in Pregnant Rat (Gonadotropin Releasing Hormone-Agonist가 임신된 흰쥐 황체세포의 세포자연사에 미치는 영향)

  • 양현원;김종석;박철홍;윤용달
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Since GnRH and its receptor genes are expressed in the ovary, it has been suggested that ovarian GnRH might be involved in the regulation of ovarian function and the apoptosis of ovarian cells. However, it was not known well on the expression and function of GnRH and its receptor in the corpus luteum. The present study was undertaken to investigate whether GnRH and its receptor are expressed in luteal cells and GnRH has any effect on the apoptosis of luteal cells. Luteal cells obtained from the pregnant rats were cultured and stained for GnRH and its receptor proteins. Cultured luteal cells showed distinct immunoreactivity against both anti-GnRH and anti-GnRH receptor antibodies. In addition, the presence of GnRH receptor protein in cultured cells was confirmed by Western blot analysis. To investigate the effect of GnRH on the apoptosis of luteal cells, luteal cells were cultured in the presence of 10$^{-6}$ M GnRH-agonist(GnRH-Ag) for 3, 8, and 12h. TUNEL assay showed that the number of cells undergoing apoptosis increased 12h after culture(P<0.05). DNA fragmentation analysis confirmed the results such that the cells treated for 12h showed the greatest increase of fragmentation(p<0.05). Further, Western blot analysis of cytochrome c in the mitochondrial and cytoplasmic fractions of the luteal cells showed that GnRH-Ag treatment increased the content of cytochrome c in cytoplasm. These results demonstrate that the luteal cells express GnRH and its receptor and GnRH-Ag treatment induces apoptosis of the luteal cells via mitochondrial release of cytochrome c. The present study suggest that the releasing of cytochrome c from mitochondria might be involved in the luteal cell apoptosis induced by GnRH-Ag.

  • PDF

Quantitative Screening of Insect Cell Transformants Stably Expressing $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 Fusion Protein

  • Deo Vipin Kumar;Kato Tatsuya;Asari Naoko;Park Enoch Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.275-279
    • /
    • 2005
  • Insect cell transformants, stably expressing human $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 $({\beta}3GnT2)$ as the green fluorescent protein $(GFP_{uv})-fused$ protein, were efficiently isolated on Western blot by the quantification of the densitometric intensity of the fusion protein. From almost 150 transformants containing the fusion gene linked to three different types of signal sequence, two transformants, Tn-pXme4a and -pX28a, were successfully selected, showing 8.3 and 8.6 mU/mL ${\beta}3GnT$ activity, respectively. This method requires a screening time almost one-half that required in the isolation of stably transformed cells with high expression levels, and at the same time allows the handling a large number of transformants.