• Title/Summary/Keyword: Gmaw

Search Result 264, Processing Time 0.031 seconds

Control of arc pulse to overcome misalignment and gap variation in root pass welding of pipe butt joint by GMAW (GMAW 초층 이면비드 용접에서 단차와 갭변동 극복을 위한 아크 충격량 제어)

  • Son, Chang-Hui;Kim, Nam-Gyu;Park, Hyo-Hui;Cho, Sang-Myoung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.76-76
    • /
    • 2011
  • 선박이나 산업 플랜트에서 파이프 또는 탱크류의 맞대기 용접 시 안정적인 이면비드의 형성은 매우 중요하다. 대부분의 현장에서 파이프 맞대기 초층용접부의 안정적인 이면비드를 형성하기 위해 3mm의 루트갭을 띄우고 루트면이 없는 V-그루브에서 필러를 사용하는 수동 TIG용접을 주로 사용하고 있다. 수동 TIG용접은 고품질의 비드와 우수한 아크안정성, 그리고 용접인자의 제어가 쉽다는 장점이 있다. 그러나 수동 TIG용접은 용접속도가 10cpm정도로 느리기 때문에 GMAW에 비해 생산성이 낮고 작업자의 숙련도에 따라 품질이 변하게 된다. 본 연구에서는 높은 생산성과 기준갭 1.5mm에서 단차의 허용공차를 크게 하기 위해 루트면 3mm를 가지는 U-그루브의 설계를 하였으며, 두꺼운 루트면을 가지는 그루브에서 안정적인 이면비드를 형성시키기 위해 GMAW에서 아크 충격량에 대한 검토를 실시하였다. GMAW의 아크력이 용입에 어떠한 영향을 미치는지 검토하기 위해 수냉되는 동판에 갭을 1.5mm 띄우고 동일한 용착량과 입열량에서 아크력만을 변화시켜 실험하였다. 또한, U-그루브의 루트부를 모델링하여 두께3t의 평판시편을 각각의 갭과 단차 조건에서 실험하였다. 이 때, 기준갭 1.5mm에서 갭에 의해 생기는 단면적을 기준 갭단면적, 갭이 증가함에 따라 증가되는 단면적을 추가 갭단면적, 갭이 감소함에 따라 감소하는 단면적을 감소 갭단면적으로 정의하였다. 용접 중 발생하는 추가, 감소 갭단면적에 대하여 용착량을 50%의 수준으로 증가, 감소 시켰다. 갭에 따라 아크력을 변경하여 실험을 실시하였고 이면비드의 형상을 확인 하였다. 마지막으로 평판 시편의 조건에서 안정적으로 이면비드가 형성된 조건을 pipe U-그루브에 적용하였다. 그 결과 동판에서 용착량과 입열량이 같음에도 불구하고 아크력이 증가함에 따라 용입이 깊어짐을 확인하였다. 또한. 3t 평판시편에서 아크력의 제어를 통해 큰 단차와 갭이 있을 때, 안정적인 이면비드를 얻을 수 있는 조건을 확립하였다. 마지막으로 pipe U-그루브에서 앞선 실험의 용접조건으로 갭과 단차의 변화에 대해 실험을 하였으나, 시험편의 두께차이에 의한 전도 열손실로 인해 이면비드의 형성이 어려웠고, 아크 충격량의 증가를 통해 이러한 문제를 해결하였다.

  • PDF

A study on the welding current and voltage signal processing method for the quality evaluation of robotic GMAW (GMAW 품질분석을 위한 신호처리 방법에 관한 연구)

  • Hong, Woo Heon;Ryu, Jeong Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.25-31
    • /
    • 2014
  • Gas metal arc welding (GMAW) is currently the most widely used arc welding processes in the industry because of its high metal deposition rate, flexibility and low cost. It is attractive for high-productivity manufacturing applications and is well suited to automatic or robotic welding. Welding voltage and current have a significant impact on the weld bead. However, welding voltage and current are changed variously according to welding condition and user environment, and prediction is impossible. To determine the welding conditions, the welding current and voltage are applied to the appropriate data analysis techniques. In this paper, we used the moving average filter to the welding voltage and current data, and normal and abnormal welding waves were distinguished.

A Study on the Calculating Method of the Heat Input Efficiency in Arcspot Welding (아크 스폿 용접의 입열효율 계산 방법에 관한 연구)

  • Jang, Kyoung-Bok;Cho, Sang-Myoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1065-1070
    • /
    • 2003
  • In arc spot welding process, the arc is not moving and heat input is concentrated in one spot so that the heat input efficiency of arc is higher than that of GMAW. In other words, the heat input efficiency of arc change during weld time because arc start is done in spot and weld metal is filled. Therefore, the heat input model of arc spot welding should be different from that of general GMAW. In present study, the calculating model of heat input efficiency in arc spot welding was suggested by temperature monitoring near spot in arc spot welding of copper plate. The result showed that the heat input efficiency of arc was changed three times during weld time. The accuracy of calculating method of heat input efficiency was verified by heat transfer analysis of arc spot welding process using finite element method.

Modeling of Are Light Intensity and Its Application to Weld Seam Tracking in GMAW (GMA용접의 아크빛 모델 및 용접선 추적에의 응용)

  • 유용상;최상균;유중돈;선우희권
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.113-121
    • /
    • 1996
  • The arc sensor has been most widely used for weld seam tracking through welding current or voltage variation. In this work, the relation between the arc light intensity and welding condition is investigated using heat balance in the Plasma for its possible application to seam tracking in the GMAW process. The arc light intensity is derived to be the function of the arc length and welding current Experiments are carried out to verify the proposed heat balance model. Performances of least square and integration methods to process the signals for seam tracking are compared experimentally. Predicted arc light intensity shows reasonably good agreement with experimental results. The weld seam is successfully tracked through the arc light intensity. The least square and integration methods demonstrate almost same performance of seam tracking with $CO_2$gas shielding.

  • PDF

Development of Inference Algorithm for Bead Geometry in GMAW using Neuro-Fuzzy (Neuro-Fuzzy를 이용한 GMA 용접의 비드형상 추론 알고리즘 개발)

  • 김면희;이종혁;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.608-611
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.

  • PDF

A Study on the Metal Transfer Considering Fluid Flow in GMAW (가스 메탈 아크 용접에서 유체 유동을 고려한 금속 이행에 관한 연구)

  • 박기영;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.148-155
    • /
    • 1998
  • It is commonly known that, in GMAW, the characteristics of metal transfer and the size of molten drop are highly dependent on the welding current. These changes in the characteristics of metal transfer has a considerable effect on the weld quality, and a lot of studies have been made on metal transfer modes for that reason. In this study, two cases were investigated; the one in which the metal transfer proceeds with gravitational force, surface tension, and no electromagnetic force, and the other in which the process has electromagnetic term in addition, where the current density in the fluid has been assumed to have Gaussian distribution on any given cross-section and it acts vertically. Using fluid flow analysis, this study has observed the whole process of the development and break-up of the molten drop, and it also showed that transitional processes, drop rate, and the drop size in each metal transfer mode can be estimated.

  • PDF

Analysis of Dynamic Characteristics of Molten Drop and Pulse Condition in Pulsed-GMAW (펄스 GMA용접에서 용융 액적의 동특성 및 펄스 조건에 관한 해석)

  • 최상균;강세령;이상룡
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.491-497
    • /
    • 2002
  • Dynamic behavior of the molten drop during the peak period in the pulsed-GMAW is simulated in this work using the VOF(volume of the fluid) algerian. The dynamic characteristics of molten drop such as minimum radius, average velocity and displacement of mass center were computed as well as the internal pressure and velocity. The minimum and maximum peak durations for detaching a drop were calculated.. The result of Analysis reveals that peak current and volume of pendant drop are important factors which affecting drop detachment. A simplified model of constant acceleration is proposed to describe the behavior of molten drop during peak current, and its results agree with the experimental results.

The effect of external electromagnetic force on droplet in GMAW (가스메탈 아크용접법에서 전자기력이 아크 현상에 미치는 영향에 관한 연구)

  • Lee, Sung-Ho;Lee, Jae-Yoon;Kim, Yong;Kim, Jae-Sung;Lee, Bo-Young
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.221-223
    • /
    • 2003
  • Effects of electromagnetic force which is one of the most important factor of metal transfer that affects bead geometry and microstructure of weld metal in GMAW(gas metal arc welding). In this paper, different ways of external electromagnetic forces were applied on GMAW process and their effects on the welding were studied. On certain conditions, better bead geometry, better influence on the arc and metal transfer mode and higher welding efficiency could be obtained. Experimental methods and their results will be presented.

  • PDF

Analysis of Pulsed GMAW Using Force-Displacement Model (힘-변위 모델을 이용한 펄스 GMAW의 해석)

  • Arif, Nabeel;Lee, Jae-Hak;Yoo, Choong-Don
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • In order to determine the One-Drop One-Pulse(ODOP) condition of the pulsed gas metal arc(GMA) welding, the drop detaching phenomenon during the peak time is investigated using the force-displacement model. The drop detaching criterion is established based on the displacement of the pendant drop, and the forces exerted on the drop are calculated using the Modified Force Balance Model(MFBM). The effects of wire melting on the drop size and force are included in the force-displacement model. While the peak current has most significant effects on the drop detaching time, the initial drop mass prior to the peak time also influences drop transfer. The calculated results show good agreements with the experimental data, which implies that the ODOP condition can be predicted using the force-displacement method.

A Study on the Arc Characteristics in Butt Joint P-GMA Welding with Acute Groove Angles (작은 그루브 각을 가지는 맞대기 P-GMA 용접에서의 용접아크에 관한 연구)

  • Kim, Ryoon-Han;Na, Suck-Joo;Kim, Cheol-Hee
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.53-53
    • /
    • 2010
  • The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.

  • PDF