• Title/Summary/Keyword: Glycyrrhiza inflata

Search Result 16, Processing Time 0.017 seconds

Evaluation of Antifungal and Antibacterial Activity of Newly Developed Licorice Varieties

  • Kang, Sa-Haeng;Song, Young-Jae;Jeon, Yong-Deok;Soh, Ju-Ryun;Park, Jung-Hyang;Lee, Jeong-Hoon;Park, Chun-Geon;Jang, Jae-Ki;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.103-103
    • /
    • 2019
  • Glycyrrhizae radix, commonly known as licorice, is a perennial herb belonging to Leguminosae and also includes various components such as, glycyrrhizin, liquiritin, liquiritigenin and isoliquiritigenin etc. Licorice has been widely used in East Asia as a medicine having pharmacological effects like antioxidants, anti-bacterial, anti-inflammatory, anti-cancer and immune modulatory activities. Among various licorice, Glycyrrhiza (G.) uralensis G. glabra and G. inflata are used for pharmaceutical purposes in Korea. However, cultivation of licorice has some problems such as low quality, low productivity, and early leaf drop. Korea Rural Development Administration developed new cultivars Wongam and Sinwongam, which are improved in cultivation and quality. To register the newly developed cultivar (s) on Ministry of Food and Drug Safety in Korea as a medicine, it is necessary to prove the similarity and difference through the comparative studies between already-registered species and new cultivars. Some fungi and bacteria usually in the human oral cavity and intestines exist as harmless state in human body. Also, the skin and genital infections by fungi can lead to toxic systemic infections and are accompanied by flushing, rashes, burning or painful sensation. The influences of licorice varieties on fungi and bacteria might be an evidence to prove the outstanding effect of newly developed licorice variety. In this study, the antifungal and antibacterial activity was investigated using newly developed licorice varieties Wongam, and Sinwongam against various fungi and bacteria. These results means newly developed licorice could be used as a replacement of already-registered species in terms of antifungal and antibacterial application.

  • PDF

Comparative study of external-intenal morphological shape in origins and hybrids for Glycyrrhizae Radix et Rhizoma (감초의 기원 및 교잡종 외내부형태 성상 비교연구)

  • Kim, Young-Sik;Park, Chun-Geon;Choi, Goya;Chang, Jae-Ki;Lee, Jeong-Hoon;Ju, Young-Sung
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives : The consumption of licorice is large in Korea, but domestic production is insufficient due to the lack of adaptability. This study aimed to provide a morphological basis for adding interspecific hybrid licorice with improved adaptability to pharmacopoeia. Methods : This study was to establish identification criteria for the original plants, external and internal morphology of the authentic herbal medicines (Glycyrrhiza uralensis, G. glabra and G. inflata), market products and artificially interspecific hybrid forms of licorice. For this purpose, previous studies were investigated and visual and histological observations were carried out. We focused on the internal morphology by microscopic observation for securing objectivity. Finally, we proposed the identification keys for precise classification of each part. Results : 1) Original plant : Licorice species in the compendium were distinguished by the number of leaflets, presence of hair on the fruit, curvature and swelling of the fruit. 2) External morphology : Licorice species were distinguished by degree of powderiness, tearing gap, radial structure in the cross section and existence of protrusion of outer epidermis. 3) Internal morphology : Licorice species were distinguished by the degree of development of phloem fiber bundle, development of obliterated sieve, whether the secondary medullary ray are branched. In the case of interspecific hybrids, the characteristics of both species used for hybridization were mixed in all observation methods. Conclusions : These results suggest that the interspecific crossbred licorice is suitable for the pharmacopoeial standard. Therefore, it can be applied as a herbal medicine through additional supplementary study.

Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds

  • Seo, Ji-Hye;Jang, Si Won;Jeon, Young-Joo;Eun, So Young;Hong, Yean Ju;Do, Jeong Tae;Chae, Jung-il;Choi, Hyun Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1245-1252
    • /
    • 2022
  • Induced pluripotent stem cells (iPSCs) can be generated from somatic cells using Oct4, Sox2, Klf4, and c-Myc (OSKM). Small molecules can enhance reprogramming. Licochalcone D (LCD), a flavonoid compound present mainly in the roots of Glycyrrhiza inflata, acts on known signaling pathways involved in transcriptional activity and signal transduction, including the PGC1-α and MAPK families. In this study, we demonstrated that LCD improved reprogramming efficiency. LCD-treated iPSCs (LCD-iPSCs) expressed pluripotency-related genes Oct4, Sox2, Nanog, and Prdm14. Moreover, LCD-iPSCs differentiated into all three germ layers in vitro and formed chimeras. The mesenchymal-to-epithelial transition (MET) is critical for somatic cell reprogramming. We found that the expression levels of mesenchymal genes (Snail2 and Twist) decreased and those of epithelial genes (DSP, Cldn3, Crb3, and Ocln) dramatically increased in OR-MEF (OG2+/+/ROSA26+/+) cells treated with LCD for 3 days, indicating that MET effectively occurred in LCD-treated OR-MEF cells. Thus, LCD enhanced the generation of iPSCs from somatic cells by promoting MET at the early stages of reprogramming.

Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells

  • Seung-On Lee;Mee-Hyun Lee;Ah-Won Kwak;Jin-Young Lee;Goo Yoon;Sang Hoon Joo;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.661-673
    • /
    • 2023
  • Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells (Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도)

  • Oh, Ha-Na;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1305-1313
    • /
    • 2019
  • Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee;Sang Hoon Joo;Jin-Young Lee;Ah-Won Kwak;Ki-Taek Kim;Seung-Sik Cho;Goo Yoon;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.104-114
    • /
    • 2024
  • Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.