• Title/Summary/Keyword: Glycylsarcosine

Search Result 4, Processing Time 0.02 seconds

Uptake of a Dipeptide by the Dipeptide Transporter in the HT-29 Intestinal Cells (HT-29 장관세포에 있는 디펩티드수송체에 의한 디펩티드의 흡수)

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 1995
  • The peptide transporter can be utilized for improving the bioavailability of compounds that are poorly absorbed. Characterization of the dipeptide uptake into the human intestinal epithelial cells, HT-29 was investigated. The uptake of tritiated glycylsarcosine $([^3H]-Gly-Sar,\;0.1\;{\mu}Ci/ml)$ was measured in confluent or subconfluent HT-29, Caco-2, and Cos-7 cells. Uptake medium was the Dulbecco's Modified Eagle's Media (DMEM) adjusted to pH 6.0. Both HT-29 and Caco-2 cells expressed the dipeptide transporter significantly (p<0.005) but Cos-7 did not. Certain portions of passive uptake were observed in all three cell lines. Uptake of Gly-Sar was largest at 7 days after plating HT-29 cells with significant inhibition with 25 mM cold Gly-Sar (p<0.05). but expression ratio of the dipeptide transporter was 0.7, suggesting lower expression. The effect of pH on Gly-Sar uptake was not significant in the range of pH 6 to 8. Gly-Sar uptake was also inhibited with 50 mM carnosine, 25 mM Gly-Sar, and 35 mM cephalexin significantly (p<0.05). From above results the dipeptide transporter was expressed well in HT-29 cells and was similar to that in the small intestine, suggesting that large amounts of mRNA of the transporter from the cells can be obtained.

  • PDF

Functional Experessions of Endogenous Dipeptide Transporter and Exogenous Proton/Peptide Cotransporter in Xenopus Oocytes

  • Oh, Doo-Man;Amidon-Gordon-L.;Sadee-Wolfgang
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • It is essential to clone the preptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous protor/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected in Xenopus laevis oocytes by measuring the uptake of $0.25/{mu}M(10{\;}{\mu}Ci/ml)[^3H]$-glycylsarcosine (Gly-Sar) at pH 5.5 with or without inhibitors. Yptake of Gly-Sae in oocytes was significantly inhibited by $25{\mu}M$ glycine nd sarcosine. This result suggests that a selective transporter is involved in the endogneous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sae uptake significantly, suggesting no depedence of the endogenous transporter on a transmembrane proton gradient. An exogenous $H^+/pep-tide$ contransported was expressed after microinjection of polyadenylated messenger ribonucleic acid $[poly(A)^+ -mRNA]$ obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times thigher than that in water-injected oocyltes. Thus, frog occytes can be utilized fro expression cloning of the genes encoding intestinal $H^+$peptide contransporters. Size fractionation of mRNA was successfully obtained using this technique.

  • PDF

Functional Expression of a Dipeptide Transporter Obtained from Intestinal HT-29 Cells Using Xenopus Oocytes (장관세포인 HT-29에 존재하는 디펩티드수송체의 Xenopus oocyte에서의 발현)

  • Oh, Doo-Man;Yang, Chae-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.299-305
    • /
    • 1995
  • Cloning the gene encoding a dipeptide transporter is necessary for understanding the absorption mechanism of peptides and peptide-like drugs in the gastrointestinal tract. Functional expression of a dipeptide transporter after microinjection into Xenopus laevis oocytes was performed using the mRNA purified from human intestinal HT-29 cells. Fifty nanoliters of purified mRNA (1 mg/mL) were microinjected into healthy oocytes followed by incubation for 4 days in order to express a dipeptide transporter. Functional expression was determined by a uptake assay using 10 Ci/mL $[^3H]-glycylsarcosine$, a dipeptide substate of the transporter. Seasonal variability and batch-to-batch variability were greater in summer. The usage of beveled micropipettes improves viability of oocytes at 4 days after microinjection. Expression of a dipeptide transporter in oocytes after microinjection of mRNA obtained from HT-29 cells was significantly larger than those after microinjection of water or mRNA obtained from the rabbit intestine.

  • PDF

FUNCTIONAL EXPRESSION OF A PEPTIDE TRANSPORTER IN XENOPUS OOCYTES

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.31-40
    • /
    • 1993
  • It is essential to clone the peptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous proton/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected in Xenopus laevis oocytes by measuring the uptake of $0.25\;{\mu}M\;(10\;{\mu}Ci/ml)\;[^3H]-glycylsarcosine$ (Gly-Sar) at pH 5.5 with or without inhibitors. Uptake of Gly-Sar in oocytes was significantly inhibited by 25 mM Ala-Ala, Gly-Gly, and Gly-Sar (p<0.05), but not by 2.5 mM of Glu-Glu, Ala-Ala, Gly-Gly, Gly-Sar and 25 mM glycine and sarcosine. This result suggests that a selective transporter is involved in the endogenous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sar uptake significantly, suggesting no dependence of the endogenous transporter on a transmembrane proton gradient. An exogenous $H^+/peptide$ cotransporter was expressed after microinjection of polyadenylated messenger ribonucleic acid $[poly\;(A)^+-mRNA]$ obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times higher than that in water-injected oocytes. Thus, frog oocytes can be utilized for expression cloning of the genes encoding intestinal $H^+/peptide$ cotransporters. Using the technique size fractionation of mRNA was sucessfully obtained.

  • PDF