• Title/Summary/Keyword: Glycosides

검색결과 601건 처리시간 0.021초

Phthalimido기 존재하에서 Zinc Dust에 의한 2,2,2-Trichloroethyl 기의 선택적 환원분해 (Selective Cleavage of 2,2,2-Trichloroethyl Group with Zinc Dust in the Presence of Phthalimido Function)

  • 정봉영;김영환
    • 대한화학회지
    • /
    • 제23권3호
    • /
    • pp.175-179
    • /
    • 1979
  • Phthalimido기와 2,2,2-trichloroethyl기는 acetic acid와 같은 산성용매에서 zine dust에 의하여 각각 3-hydroxyphthalimidino기로 환원 되거나 혹은 환원분해된다. 그러나 THF-pH 4.5 buffer 혼합용매를 사용하므로써, free carboxylic acid가 존재하지 않는 경우, phthalimido는 환원시키지 않고 2,2,2-trichloroethyl기만을 선택적으로 환원분해시킬 수 있음을 발견하였다. 따라서 $2,2,2-trichloroethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-{\beta}-D-glucopyranose$ (1)를 THF-pH 4.5 butter 혼합용매에서 zinc dust와 반응시키면, 2,2,2-trichloroethyl 기만이 선택적으로 환원분해된 $3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-{\beta}-D-glucopyranose$ (5)를 좋은 수득율로 얻을 수 있었다.

  • PDF

In Vitro Peroxynitrite Scavenging Activity of 6-Hydroxykynurenic Acid and Other Flavonoids from Gingko biloba Yellow Leaves

  • Hyun, Sook-Kyung;Jung, Hyun-Ah;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1074-1079
    • /
    • 2006
  • As part of our research on phytochemicals that exert protective effects against diseases related to reactive nitrogen species, we have evaluated the scavenging activity of the yellow leaves of Ginkgo biloba on $ONOO^{-}$. The methanol extract and ethyl acetate fraction obtained from yellow leaves of G. biloba evidenced a marked scavenging activity on authentic $ONOO^{-}$. Repeated column chromatography of the active ethyl acetate soluble fraction on silica gel, Sephadex LH-20, and RP-18, resulted in the purification of 15 known compounds, including sciadopitysin (1), ginkgolide B (2), bilobalide (3), isoginkgetin (4), kaempferol (5), luteolin (6), protocatechuic acid (7), bilobetin (8), amentoflavone (9), ${\beta}-sitosterol$ glucopyranoside (10), kaempferol 3-O-rhamnopyranoside (11), kaempferol 3-O-glucopyranoside (12), kaempferol $3-O-[{6^{'}-O-p-coumaroyl-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-L-rhamnopyranoside]$ (13), kaempferol 3-O-rutinoside (14), and 6-hydroxykynurenic acid (15). Among the compounds isolated, flavonoids (5, 6 and 11-14), protocatechuic acid (7), and 6-hydroxykynurenic acid (15) all exhibited marked scavenging activities on authentic $ONOO^{-}$. The $IC_{50}$ values of 5-7, 11-14 and 15 were as follows: $2.86{\pm}0.70,\;2.30{\pm}0.04,\;2.85{\pm}0.10,\;5.60{\pm}0.47,\;4.16{\pm}1.65,\;2.47{\pm}0.15,\;3.02{\pm}0.48,\;and\;6.24{\pm}0.27\;{\mu}M$, respectively. DL-Penicillamine ($IC_{50}=4.98{\pm}0.27\;{\mu}M$) was utilized as a positive control. However, the other compounds (1-4, 8-10) exerted no effects against $ONOO^{-}$.

Metabolic changes during adaptation to saline condition and stress memory of Arabidopsis cells

  • Chun, Hyun Jin;Park, Mi Suk;Lee, Su Hyeon;Jin, Byung-Jun;Cho, Hyun Min;Hong, Young-Shick;Kim, Min Chul
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.175-175
    • /
    • 2017
  • To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the acquired salt tolerance of adapted cells was memorized. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. Consistently, salt adapted cells contained more lignin in their cell walls compared to control cells. The results provide new insight into mechanisms of plant adaptation to saline stress as well as stress memory in metabolic level.

  • PDF

서양삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화 (The Change of Ginsenoside Composition in American Ginseng (Panax quinquefolium) Extract by the Microwave and Vinegar Process)

  • 조희경;곽현희;임병옥;조순현;고성권
    • 생약학회지
    • /
    • 제45권2호
    • /
    • pp.107-112
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of American ginseng (Panax quinquefolium) extract featuring high concentration of ginsenoside $Rg_3$, $Rg_5$, and $Rk_1$, Red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of American ginseng were processed under several treatment conditions of microwave and vinegar (about 14% acidity). The results showed that the quantity of ginsenoside $Rg_3$ increased by over 0.9% at the 20 minutes of the pH 2~4 vinegar and microwave American ginseng ethanol extract compared with other process times. The result of MAG-20 indicates that the American ginseng microwave and vinegar-processed American ginseng extracts (about 14% acidity) treated for 20 minutes produced the highest amount of ginsenoside $Rg_3$ (0.969%), $Rg_5$ (1.071%), and $Rk_1$ (0.247%). Besides, MAG-15 indicates that the microwave - and vinegar-processed American ginseng extracts (about 14% acidity) treated for 15 minutes produced the highest amount of ginsenoside $Rg_3$ (0.772%), $Rg_5$ (1.330%), and $Rk_1$ (0.386%). This indicates that American ginseng treated with microwave and vinegar had the quantity of the ginsenoside $Rg_3$ over 32 times the amount of the ginsenoside $Rg_3$ (which was not found in raw and American ginsengs) in the average commercial Red ginseng.

Preliminary pharmacognostical and phytochemical evaluation of Stachys tibetica Vatke

  • Kumar, Dinesh;Bhat, Zulfiqar Ali;Kumar, Vijender;Chashoo, Ishtaq Ahmad;Khan, Nisar Ahmad;Ara, Irfat;Shah, Mohammad Yassin
    • 셀메드
    • /
    • 제2권1호
    • /
    • pp.11.1-11.7
    • /
    • 2012
  • Stachys tibetica Vatke (Lamiaceae) is an important medicinal plant in the folk medicine of Ladakh, India and Tibet for the treatment of various mental disorders. Infusion and decoction of the whole plant is used as a cup of tea for a severe fever, headaches and to relieve tension. The recent study is aimed to evaluate the preliminary pharmacognostical and phytochemical nature of Stachys tibetica Vatke. The whole plant material was subjected to successive soxhlet extraction with petroleum ether (40 - $60^{\circ}C$), chloroform, ethyl acetate, methanol and finally decocted with water to get the respective extracts. The fluorescence characteristics of the powdered materials were analysed under ultraviolet light and ordinary light. Different physicochemical parameters such as ash value, extractive value, foaming index, pH values, loss on drying and determination of foreign matter were carried out as per WHO guidelines. The total fat, flavonoid, saponin and volatile contents were also determined. Macroscopical studies revealed the authentication of the plant drug. Physicochemical parameters helped to standardize the plant material while preliminary qualitative chemical tests of different extracts showed the presence of Glycosides, Carbohydrates, Phytosterols/triterpenoids, Saponins, Fixed oils, Fats and phenols/tannins. Quantification of the total flavonoids and saponins and contents were determined as $54.66{\pm}0.58mg/g$ and $75.42{\pm}0.48mg/kg$ respectively, while the volatile and fat contents were 6.5% and 0.7% respectively. Results may lay the foundation for the standardization of the drug and discovery of new molecules from S. tibetica for the treatment of various diseases.

발아콩을 이용한 초콩의 제조 중 Isoflavone 및 특성 변화 (Changes in Isoflavone and Some Characteristics of Chokong of Germinated Soybeans during Pickling in Vinegar)

  • 엄권용;김주숙;최희숙;차보숙;김우정
    • 한국식품영양과학회지
    • /
    • 제35권3호
    • /
    • pp.359-365
    • /
    • 2006
  • 콩을 24시간 발아시켜 건조한 것을 양조식초에 480시간 절임하면서 초콩을 제조하는 과정 중 콩과 절임액의 isoflavone과 oligo당 그리고 pH, 색, texture의 변화를 조사하였다. 그 결과 절임이 진행되는 동안 콩에 함유된 isoflavone은 비발아콩의 경우 128.2 mg%에서 480시간 절임 하였을 때 210.0 mg%로 약 64%가 증가되었고 발아콩은 133.4 mg%에서 절임 480시간 후에는 239.7 mg%로 약 80%증가하였으며 특히 aglycone type의 증가가 더욱 현저하였다. 절임액의 pH는 절임 24시간 후에 2.4에서 3.5로 빠르게 증가하였으며 수용성 고형분 또한 빠른 증가를 보였고, L값은 감소하였다. Oligo당은 급속히 감소하여 절임 72시간 후에 약 90%이상 감소하였으며 그 중 raffinose와 stachyose의 감소가 더욱 빨리 감소하였다.

광나무 잎의 페놀성 화합물 (Phenolic Compounds of Ligustrum japonicum Leaves)

  • 조정옥;정인창
    • 한국식품영양과학회지
    • /
    • 제35권6호
    • /
    • pp.713-720
    • /
    • 2006
  • 식물자원으로부터 생리활성 물질의 이용측면에서 국내에서 자생하고 있는 광나무 잎을 대상으로 하여 다양한 생리활성을 가지는 것으로 보고된 페놀성 화합물의 분포를 확인하였다. 총 페놀성 함량은 $0.89{\sim}1.53%$, 축합형 탄닌은 $0.10{\sim}0.13%$였으며, flavonoid는 aglycone인 apigenin, luteolin과 칼럼크로마토그라피를 행하여 분획으로 분리한 후 가수분해하여 이들의 배당체를 확인하였다. 페놀산의 분획 중 유리형 페놀산 화합물에는 tyrosol, t-cinnamic acid, p-Hydroxybenzoic acid, vanillic acid, shikimic acid, protocatecuic acid등이 존재하였다. 에스테르형 페놀산 화합물에는 tyrosol, t-cinnamic acid, ferulic acid, esculetin, caffeic acid, p-coumaric acid, hydroxytyrosol 등이 함유되었다. 결합형 페놀성 화합물에는 tyrosol, t-cinnamic, p-coumaric acid와 미확인 페놀성 물질들이 존재하였다. 따라서 광나무 잎은 xanthine oxidase 활성저해, LDL 산화, 혈소판 응집저해, 항균활성 등 다양한 생리활성을 나타내는 것으로 보고되고 있는 tyrosol, hydroxytyrosol, protocatecuic acid 등 풍부한 페놀성 화합물을 함유하고 있으므로 유용한 식물자원이 될 수 있음을 확인하였다.

Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment

  • Li, Yincong;Ku, Seockmo;Park, Myeong Soo;Li, Zhipeng;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.1952-1960
    • /
    • 2017
  • Recently, soybean isoflavone aglycones (i.e., daidzein and genistein) and ${\gamma}-aminobutyric$ acid (GABA) have begun to receive considerable consumer attention owing to their potential as nutraceuticals. To produce these ingredients, multiple microorganisms and their enzymes are commonly used for catalysis in the nutraceutical industry. In this work, we introduce a novel fermentation process that uses whole-cell biocatalysis to accelerate GABA and isoflavone aglycone production in doenjang (a traditional Korean soybean paste). Microbial enzymes transform soybean isoflavone glycosides (i.e., daidzin and genistin) and monosodium glutamate into soybean isoflavone aglycones and GABA. Lactobacillus brevis GABA 100 and Aspergillus oryzae KACC 40250 significantly reduced the production time with the aid of a protease. The resulting levels of GABA and daidzein were higher, and genistein production resembled the levels in traditional doenjang fermented for over a year. Concentrations of GABA, daidzein, and genistein were measured as 7,162, 60, and $59{\mu}g/g$, respectively on the seventh day of fermentation. Our results demonstrate that the administration of whole-cell L. brevis GABA 100 and A. oryzae KACC 40250 paired with a protease treatment is an effective method to accelerate GABA, daidzein, and genistein production in doenjang.

약콩, 비트 추출물의 자외선에 의한 망막 상피세포와 마우스의 눈 손상 조절 효능 (Rhynchosia volubilis Lour. and Beta vulgaris Modulate Extracts Regulate UV-Induced Retinal Pigment Epithelial Cell and Eye Damage in Mice)

  • 김하림;김솔;김상준;정승일;김선영
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.131-138
    • /
    • 2020
  • Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UV irradiation can generate free radicals including reactive oxygen species (ROS), which are known to cause lipid peroxidation of cellular membranes. It has also been shown that UV can damage DNA directly and induce apoptosis. Rhynchosia volubilis Loureiro (the small black bean or yak-kong, RV) and Beta bulgaris (beet, BB) are used as health supplements. In this study, we explored the protective effects of RV and BB against UVA-induced damage in human pigment epithelial (ARPE-19) cells and in mice. RV and BB mixture and their effective constituents (cyanidin, delphidin, petunidin glycosides) improved cell viability and suppressed intracelluar ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), Erk1/2 was analyzed by immunoblotting. RV and BB mixture inhibited UVA-induced phosphorylation of p38 MAPK, JNK, Erk1/2 in APRE-19 cells. RV and BB treatment also showed protective effects on ocular damage in UVA-irradiated mice by increasing the levels of endogenous antioxidants such as superoxide dismutase and glutathione. RV and BB have the potential to be used in a range of ocular diseases and conditions, based on in vitro and in vivo study.

산층층이꽃 추출물로부터 성분 분리 및 암세포성장 및 NO 생성 억제활성 (Isolation of the Constituents from Clinopodium chinense var. shibetchense and Inhibition Activity on Cancer Cell Growth and Nitric Oxide Production)

  • 김동화;이상국;박경식;박희준
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.93-99
    • /
    • 2020
  • This study was performed to find anti-inflammatory or antitumor compounds from the polar fraction obtained from the extract of Clinopodium chinense var. shibetchense (H. Lev) Koidz (Labiatae). Chromatography of the BuOH fraction yielded two flavonoid glycosides (compounds 1 and 2) and two saponins (compounds 3 and 4). On the basis of spectroscopic data, compounds 1 and 2 were identified to be ponciretin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (neoponcirin) and naringenin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (isonaringin). Compounds 3 and 4 were identified to be 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-saikogenin F (buddlejasaponin IV) and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-21β-hydroxysaikogenin F (clinoposaponin XV). In addition, ursolic acid (5) was isolated and identified from the CHCl3 fraction. Inducible nitric oxide synthase (iNOS) assay and sulforhodamine B (SRB) assay were performed to lead a potential anti-inflammatory or anti-tumor compounds from C. chinense var. shibetchense. Of the four compounds (1 - 4), compound 3 considerably inhibited cancer cell growth and NO production (IC50s, 5.59 μM in iNOS assay and 6.62 - 14.88 μM in SRB assay).