• Title/Summary/Keyword: Glycosides

Search Result 601, Processing Time 0.022 seconds

Isolation of Flavonoid Glycosides with Cholinesterase Inhibition Activity and Quantification from Stachys japonica

  • Nugroho, Agung;Choi, Jae Sue;Seong, Su Hui;Song, Byong-Min;Park, Kyoung-Sik;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.259-265
    • /
    • 2018
  • The three flavone glycosides, 4'-O-methylisoscutellarein 7-O-(6'''-O-acetyl)-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (1), isoscutellarein 7-O-(6'''-O-acetyl)-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (3), and isoscutellarein 7-O-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (4) in addition to a flavonol glycoside, kaempferol 3-O-${\beta}$-D-glucopyranoside (astragalin, 2), were isolated from Stachys japonica (Lamiaceae). In cholinesterase inhibition assay, compound 1 significantly inhibited aceylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities ($IC_{50}s$, $39.94{\mu}g/ml$ for AChE and $86.98{\mu}g/ml$ for BChE). The content of isolated compounds were evaluated in this plant extract by HPLC analysis. Our experimental results suggest that the flavonoid glycosides of S. japonica could prevent the memory impairment of Alzheimer's disease.

Quantitative Analysis of Flavonoid Glycosides in Sophora japonica and Sophora flavescens by HPLC-DAD

  • Kim, Soo Sung;Park, SeonJu;Kim, Nanyoung;Kim, Seung Hyun
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.284-292
    • /
    • 2021
  • Recently, a phytoestrogenic functional food has been developed using the fruits of Sophora japonica. Phytochemical investigation of fruits of S. japonica led to the isolation of eight flavonoid glycosides using various chromatographic techniques. The isolated compounds were identified as genistin (1), sophoricoside (2), genistein 7,4'-di-O-β-D-glucopyransoide (3), sophorabioside (4), genistein-7-O-β-D-glucopyranoside-4'-O-[(α-L-rhamnopyranosyl)-(1→2)-β-D-glucopyranoside] (5), sophoraflavonoloside (6), nicotiflorin (7) and kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranoside (8), respectively, by comparison of their spectroscopic data with those reported in the literature. In addition, a new HPLC-DAD method for simultaneous determination of the isolated compounds was developed to quantitate the contents of flavonoids in S. japonica and S. flavescens. The method was validated in terms of limit of detection, limit of quantitation, specificity, linearity, precision and accuracy. The validated method was successfully applied to determine eight flavonoids in two Sophora species. The contents of eight flavonoids varied according to the parts and species. Particularly, it was found that only the fruits of S. japonica contained sophoricoside, a phytoestrogenic isoflavone.

Profiling of flavonoid glycosides in fruits and leaves of jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) using UPLC-DAD-QTOF/MS (UPLC-DAD-QTOF/MS를 이용한 대추나무(Zizyphus jujuba var. inermis (Bunge) Rehder) 잎과 열매의 플라보노이드 배당체 분석)

  • Lee, Min-Ki;Kim, Heon-Woong;Kim, Young Jin;Lee, Seon-Hye;Jang, Hwan-Hee;Jung, Hyun-Ah;Kim, Sook-Bae;Lee, Sung-Hyen;Choe, Jeong-Sook;Kim, Jung-Bong
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1004-1011
    • /
    • 2016
  • Flavonoids, non-nutrient secondary metabolites of plants, are widely distributed in commonly consumed agro-food resources. Flavonoids include aglycones, and their glycosides are reported to have potential health-promoting compounds. The aim of this study was to investigate flavonoid glycosides in the fruit and leaves of Zizyphus jujuba var. inermis (Bunge) Rehder (jujube). A total of six flavonoids (five flavonols and one chalcone) were identified in jujube fruit and leaves by using ultra-performance liquid chromatography-diode array detector-quadrupole time of flight mass spectrometry along with chemical library and an internal standard. In positive ion mode, six flavonoids were linked to the C- and O-glycosides which were conjugated with sugar moieties based on kaempferol, quercetin, and phloretin aglycones. Total flavonoid contents of leaves (8,356.5 mg/100 g dry weight (DW)) was approximately 900-fold higher than that of fruit (fresh fruit, 13.6 mg/100 g dry DW; sun-dried fruits, 9.2 mg/100 g dry DW). Quercetin 3-O-rutinoside (rutin) and quercetin 3-O-robinobioside were the predominant flavonols in fruit and leaves of jujube. In particular, rutin had the highest content (6,735.2 mg/100 g DW) in leaves, and rutin is a widely reported bioactive compound. Phloretin 3',5'-di-C-glucoside (chalcone type) was detected only in leaves. The leaves of jujube contain a high content of flavonoids and the results of this study indicate that jujube leaves may be a source of bioactive flavonoids.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.