• Title/Summary/Keyword: Glycoprotein

Search Result 822, Processing Time 0.024 seconds

Antiviral activity of methanol extract from Ephedra sinica Stapf (마황 추출물의 항바이러스 활성)

  • Lee, Doseung;Lee, Dong-Sun
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.735-739
    • /
    • 2014
  • Ephedra sinica Stapf, known as a medicinal plant, inhibited not only syncytium formation, but also trafficking of viral glycoprotein, hemagglutinin-neuramidase (HN) to the cell-surface. Trafficking of viral glycoprotein to the surface of infected-cells results in syncytium formation in Newcastle disease virus (NDV)-infected baby hamster kidney (BHK) cells. Viral glycoprotein in the infected-cell is processed within the endoplasmic reticulum during routing into surface. The processing of viral glycoprotein like a N-linked oligosaccharide trimming by ${\alpha}$-glucosidase in cell is necessary for virus infection. Methanol extracts showed inhibitory activities ($IC_{50}$ $15{\mu}g/mL$) against ${\alpha}$-glucosidase. This suggested that E. sinica extracts inhibited the cell-surface expression of NDV-HN glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Glycoprotein in the Fruit Body of Sarcodon aspratus (능이자실체의 Glycoprotein)

  • Cho, Nam-Seok;Choi, Tae-Ho;Cho, Hee-Yeon;Leonowicz, Andrzej
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.51-58
    • /
    • 2004
  • This study was performed to investigate compositions of inorganic elements, amino acids and glycoprotein fractions as biological substances in fruit body of Sarcodon aspratus. The fruit body of Sarcodon aspratus contained Ca, Mg, Zn, Mn, Fe, Cu, and Pb, in particular high Ca and Na. Hot water extracts consisted of 54% of polysaccharide fraction and 32.6% of protein. In amino acids composition, fourteen free amino acids were detected, mainly glutamic acid, alanine and arginine. Fifteen kinds of total amino acids were contained with major components of glutamic acid, aspartic acid, serine and threonine. Concerned to glycoprotein extraction, 95% ethyl alcohol concentration gave the highest yields with 70.6% sugar fraction, 332% glycoprotein. Different ethyl alcohol concentration resulted in different protein precipitations, and lower concentration ethyl alcohol in the range of 30 to 70% gave more than 92% of higher sugar fraction. Crude glycoprotein (GP) was fractionated by P fraction of more than MW 300,000, P-1 fraction unadsorbed by DEAE-Sephadex, P-2 fractionated from P-1 by Sepharose 2B gel chromatography and P-3 fraction adsorbed by DEAE-Sephadex. Total sugars were increased and protein contents decreased during fractionation. GP and P-3 contained glucose, galactose, mannose and fucose. GP had high glucose with high contents of glutamic acid, serine, alanine and glycine. P-3 fraction contained high mannose with aspartic acid, glutamic acid, and glycine. P-2 fraction was 700,000 MW with high glucose and fucose, and low protein of 1.1%, high amounts of aspartic acid, glutamic acid and alanine, but no mannose and no cysteine.

Inhibitory Effect of Glycoprotein Isolated from Cudrania tricuspidata Bureau on Histamine Release and COX-2 Activity in RBL-2H3 Cells (RBL-2H3 세포에 있어서 꾸지뽕 당단백질에 의한 히스타민 방출 및 COX-2 활성 억제 효과)

  • Oh, Phil-Sun;Lee, Hye-Jin;Lim, Kye-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study was to determine the inhibitory effect of a glycoprotein isolated from Cudrania tricuspidata Bureau (CTB glycoprotein, 75 kDa) on immunoglobulin E (IgE)-induced allergic inflammation in RBL-2H3 cells. This experiment evaluated the production of intracellular reactive oxygen species (ROS), the activities of mitogenactivated protein kinase (MAPK), transcription factor (c-jun), and cyclooxygenase (COX)-2, and histamine release in cells. The results showed that the CTB glycoprotein inhibited histamine release and COX-2 expression induced by IgE in the cells. The CTB glycoprotein also had suppressive effects on the expressions of ERK1/2, p38 MAPK, c-jun, and the production of intracellular ROS in IgE-treated RBL-2H3 cells. The activities of c-jun and COX-2 were collectively blocked by ERK1/2 inhibitor (PD98059) and p38 MAPK inhibitor (SKF86002), respectively. Hence, we speculate that CTB glycoprotein might be a component with potential use in the preparation of health supplements for the prevention of allergic diseases.

Baculovirus-based Vaccine Displaying Respiratory Syncytial Virus Glycoprotein Induces Protective Immunity against RSV Infection without Vaccine-Enhanced Disease

  • Kim, Sol;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.12 no.1
    • /
    • pp.8-17
    • /
    • 2012
  • Background: Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract diseases in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV yet. The attachment glycoprotein (G) of RSV is a potentially important target for protective antiviral immune responses. Recombinant baculovirus has been recently emerged as a new vaccine vector, since it has intrinsic immunostimulatory properties and good bio-safety profile. Methods: We have constructed a recombinant baculovirus-based RSV vaccine, Bac-RSV/G, displaying G glycoprotein, and evaluated immunogenicity and protective efficacy by intranasal immunization of BALB/c mice with Bac-RSV/G. Results: Bac-RSV/G efficiently provides protective immunity against RSV challenge. Strong serum IgG and mucosal IgA responses were induced by intranasal immunization with Bac-RSV/G. In addition to humoral immunity, G-specific Th17- as well as Th1-type T-cell responses were detected in the lungs of Bac-RSV/G-immune mice upon RSV challenge. Neither lung eosinophilia nor vaccine-induced weight loss was observed upon Bac-RSV/G immunization and subsequent RSV infection. Conclusion: Our data demonstrate that intranasal administration of baculovirus-based Bac-RSV/G vaccine is efficient for the induction of protection against RSV and represents a promising prophylactic vaccination regimen.

Expression and Characterization of the Human Immunodeficiency Virus Type 1 Mutant Envelope Glycoproteins in Mammalian Cells (진핵세포에서 HSV-1 Envelope 변이 단백질의 발현 및 발현 단백질의 특성 연구)

  • Ryu, Ji-Yoon;Park, Jin-Seu
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.3
    • /
    • pp.183-193
    • /
    • 1999
  • Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is synthesized as a 160 KDa precursor, gp160, that is cleaved by a cellular protease to form the gp120 and gp41 subunits. Mammalian expression vectors were designed that are capable of efficient expression of various mutant envelope glycoproteins derived from a molecular clone of HIV-1. To construct these vectors, one type of mutation was made at the gp120-gp41 cleavage site by oligonucleotide-directed mutagenesis. And another mutation was made to change amino acids in the membrane spanning region of HIV-1 gp41 important for membrane anchorage. Next, these two mutations were combined to generate a vector to have double mutations in cleavage site and membrane-spanning region. These mutants were transiently expressed in mammalian cells. The effect of these mutations on envelope glycoprotein synthesis, proteolytic processing and secretion was determined. In addition, cell surface expression and ability of the glycoprotein to induce syncytium formation were examined. This study provides a mammalian expression system that is capable of efficient expression and secretion of soluble gp160.

  • PDF

Evaluating the Regulation of P-glycoprotein by Phytochemicals Using Caco-2 Cell Permeability Assay System

  • Choi, Ran Joo;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • P-glycoprotein (P-gp) is a permeability glycoprotein also known as multidrug resistance protein 1 (MDR1). P-gp is an ATP-binding cassette (ABC) transporter that pumps various types of drugs out of cells. These transporters reduce the intracellular concentrations of drugs and disturb drug absorption. The Caco-2 cell permeability assay system is an effective in vitro system that predicts the intestinal absorption of drugs and the functions of enzymes and transporters. Rhodamine-123 (R-123) and digoxin are well-known P-gp substrates that have been used to determine the function of P-gp. Efflux of P-gp substrates by P-gp has been routinely evaluated. To date, a number of herbal medicines have been tested with Caco-2 cell permeability assay system to assess bioavailability. There are growing efforts to find phytochemicals that potentially regulate P-gp function. The Caco-2 cell permeability assay system is a primary strategy to search for candidates of P-gp inhibitors. In this mini review, we have summarized the P-gp modulation by herbal extracts, decoctions or single components from natural products using Caco-2 cell permeability assays. Many natural products are known to regulate P-gp and herbal medicines could be used in combination with conventional drugs to enhance bioavailability.

Protein Binding of Disopyramide -Displacement by Mono-N-Dealkyl-Disopyramide and Variation with Commerial Source of Alpha-1-Acid Glycoprotein-

  • Haughey, David B.;Steinberg, Irving;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 1985
  • Previous studies show that the free (unbound) fraction of disopyramide in human serum is drug concentration dependent~ at corresponding serum disopyramide concentrations that are achieved clinically. $^1^{\sim}^3^)\;Moreover$, disopyramide free fraction values vary several fold at any given drug concentration in human serum and tend to decrease as serum cocentrations of alpha-I-acid glycoprotein(AAG) incrase.$^4^)$ A recent $study^5^)$ demonstrates that the free fraction of disopyramide inhuman serum increases almost 2-fold following the addition of $14.4{\mu}M/L$ mono-N-dealkyldisopyramide. These studies and others. $^6^),\;^7^)$ prompted the present investigation to characterize the protein binding of disopyramide in human serum and solutions of AAG in the presence of mono-N-dealkyldisopyramide (a major metabolite of, disopyramide) and to determine the utility of using commercially available alpha-I-acid glycoprotein for drug protein binding displacement studies. Because many basic and acidic compounds are known to bind to alpha-I-acid $glycoprotein^8^)$ the present study. was performed to determine whteher commercially available AAG would provide a convenient protein source for such binding studies.

  • PDF

Toxicity of Tomato Spotted Wilt Virus Glycoprotein Signal Peptide and Promoter Activity of th 5' UTR

  • Park, Tae-Jin;Kim, Sun-Chang;Thomas L. German
    • The Plant Pathology Journal
    • /
    • v.15 no.6
    • /
    • pp.313-318
    • /
    • 1999
  • Cloning of the 5'untranslated region (5' UTR) and Nterminus of the glycoprotein precursor (G2G1) open reading frame of tomato spotted wilt virus has been problematic, possibly because of the toxicity of a signal peptide at the beginning of th G2G1 protein precursor. The toxicity of the signal peptide to bacterial growth and the reason for the expression of the peptide gene in Escherichia coli were investigated by cloning the 5' UTR and the signal peptide sequence separately. Cells transformed with the plasmid containing both the first 30 amino acids of the glycoprotein and the 5' UTR showed a severe growth inhibition whereas transformants harboring either the plasmid with the signal sequence or the 5'UTR alone did not show any ingibition. An E. coli promoter-like sequence was found in the 5'UTR and tis promoter acivity was confirmed with a promoter-less GUS gene cloned downstream of the 5'UTR. In the cloning of the Tomato spotted wilt virus (TSWV) glycoprotein G2G1 open reading frame all the recovered plasmids contained stop codons in the signal sequence region. However, clones containing no stop codon were recovered when the signal sequence and the 5'UTR were cloned separately.

  • PDF

in vitro Modulation of P-glycoprotein, MRP-1 and BCRP Expression by Mangiferin in Doxorubicin-Treated MCF-7 Cells

  • Louisa, Melva;Soediro, Tjahjani Mirawati;Suyatna, Frans Dhyanagiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1639-1642
    • /
    • 2014
  • The multidrug resistance phenotype is one of the major problems in development of cancer cell resistance to chemotherapy. Some natural compounds from medicinal plants have demonstrated promising capacity in enhancing anticancer effects in drug resistant cancer cells. We aimed to investigate whether mangiferin might have an ability to re-sensitize MCF-7 breast cancer cells previously treated with short-term doxorubicin in vitro, through the modulation of efflux transporters, P-glycoprotein (P-gp), MRP1 and BCRP. We exposed MCF-7 breast cancer cells pretreated with doxorubicin for 10 days to mangiferin (10, 25 or 50 ${\mu}M$) for 96 hours. Afterwards, we evaluated influence on cell viability and level of mRNA expression of P-gp, MRP1 and BCRP. Doxorubicin given in combination with mangiferin at low concentrations (10 and 25 ${\mu}M$) failed to give significant reduction in cell viability, while at the highest concentrations, the combination significantly reduced cell viability. The mRNA expression analysis of P-gp, MRP1 and BCRP showed that mangiferin had inhibitory effects on P-gp but no effects on MRP1 and BCRP. In conclusion, we suggest that mangiferin at high concentrations can be used as chemosensitizer for doxorubicin therapy. This effect might be attributed by inhibitory effects of mangiferin on P-glycoprotein expression.