• Title/Summary/Keyword: Glycolysis

Search Result 248, Processing Time 0.023 seconds

The Effects of Metabolic Substrates on Contractility of Isolated Rat Atria Depressed with Bupivacaine (Bupivacaine에 의해 억제된 심근수축력에 대한 대사기질의 영향)

  • Park, Seung-Joon;Chang, Joo-Ho;Jung, Jee-Chang;Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • A concentration of 0.01 mM bupivacaine was necessary to maintain approximately 50% depression of contractility of rat atria suspended in a modified Krebs-Ringer bicarbonate glucose medium, pH 7.4 at $30^{\circ}C$. Sodium pyruvate, sodium acetate, and fructose partially restored the contractility of the bupivacaine-depressed atria. However, 20 mM glucose had no effect on the bupivacaine-depressed atria, although this concentration of glucose markedly increased the contractility of normal atria not to be exposed to bupivacaine. Contractility of normal atria was not significantly influenced by sodium pyruvate, sodium acetate, and fructose. The results suggested that at least part of the negative inotropic action of bupivacaine is the result of inhibition of glucose uptake or utilization in the glycolytic pathway, and further pinpoint the blockade as an early step in the glycolytic sequence prior to the phosphofructokinase step.

  • PDF

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

The Effects of Fructose on Contractility of Isolated Rat Atria Depressed with Lidocaine (Lidocaine에 의해 억제된 심근수축력에 대한 Fructose의 영향)

  • Ko Kye-Chang;Sohn Chi-Dong;Jung Jee-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.1 s.38
    • /
    • pp.51-59
    • /
    • 1986
  • The effect of metabolic substrate fructose on the force of contraction of isolated rat atria depressed with lidocaine was determined. Fructose produced dose-dependent increase in the force of contraction of isolated atria depressed by substrate-free Krebs-Ringer bicarbonate medium. The maximally effective concentration of fructose was 30 mM. The isolated atria, suspended in Krebs-Ringer bicarbonate glucose medium aerated with 95% $O_2-5%CO_2$at $30^{\circ}C$ and pH 7.4, were depressed 50% by approximately 2.34 mg/100 ml of lidocaine. Addition of 30 mM fructose to these depressed atria resulted in a marked increase in the contractile force similar to that with pyruvate and acetate. Fructose had no significant effect, however, on atria exposed to low-calcium medium. The results are consistent with a previous report suggesting blockade by lidocaine of the uptake or utilization of glucose in the glycolytic pathway, and further pinpoint the blockade as an early step in the glycolytic sequence prior to the phospho-fructokinase step.

  • PDF

Analysis of Gene Expression in response to acid stress of Streptococcus mutans Isolated from a Korean Child (한국인 아동으로부터 분리한 Streptococcus mutans 의 산 스트레스에 따른 유전자 발현변화 분석)

  • Kang, Kyung-Hee;Kim, Young-Kwon;Lee, Hyung-Suk;Jin, Ing-Ryol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2990-2996
    • /
    • 2009
  • S. mutans, one of a major causal agents of dental caries, is component of the dental plaque and produces various organic acids such as lactic acid as the end-product of glycolysis. In this study, we are interested in comparing the gene expression of acid-shocked and control cells of S. mutans isolated from Korean with caries. Expression levels of gtfB, gtfC, gtfD and ftf were analyzed by Real-time PCR, when the cells were grown under 20 mM lactic acid stress in the exponential phase. The data showed reduced expression of these genes. S. mutans is known to have developed a variety of mechanisms to tolerate acid sterss. A more detailed analysis of the functions and interactions of acid stress proteins connecting the growth, stress tolerance, biofilm formation is under way.

An Investigation Into the Relationship Between Metabolic Responses and Energy Regulation in Antibody-Producing Cell

  • Sun, Ya-Ting;Zhao, Liang;Ye, Zhao-Yang;Fan, Li;Liu, Xu-Ping;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1586-1597
    • /
    • 2013
  • Energy-efficient metabolic responses were often noted in high-productive cultures. To better understand these metabolic responses, an investigation into the relationship between metabolic responses and energy regulation was conducted via a comparative analysis among cultures with different energy source supplies. Both glycolysis and glutaminolysis were studied through the kinetic analyses of major extracellular metabolites concerning the fast and slow cell growth stages, respectively, as well as the time-course profiles of intracellular metabolites. In three cultures showing distinct antibody productivities, the amino acid metabolism and energy state were further examined. Both the transition of lactate from production to consumption and steady intracellular pools of pyruvate and lactate were observed to be correlated with efficient energy regulation. In addition, an efficient utilization of amino acids as the replenishment for the TCA cycle was also found in the cultures with upregulated energy metabolism. It was further revealed that the inefficient energy regulation would cause low cell productivity based on the comparative analysis of cell growth and productivity in cultures having distinct energy regulation.

A Comparative Study on the Energy Metabolism of Brains of Several Vertebtrates with Respect to Their Phyogeny (척추동물 뇌조직의 Energy 대사에 관한 계통학적 비교연구)

  • 박상윤
    • The Korean Journal of Zoology
    • /
    • v.7 no.2
    • /
    • pp.25-36
    • /
    • 1964
  • The present paper deals with the comparative study on phylogenic difference in the patterns of energy metabolism of brain slices of several vertebrate species by measuring oxygen consumptionwith glucose-6-phosphate, glucose-1-phosphate, glyceraldehyde-3-phosphate or glutamate as respiratory substrate employing Warburg's manometric method, by determination of the utilization rate of glucose using glucose-1-C14 by analyzing patterns of free amino acid distribution , and by histochemical determination using glucose-1-C14 by analyzing patterns of free amino acid distribution acid distribution , and by histochemical determination of glycogen contents. 1. Glucose enhances the oxygen consumption of brain slices of animals belinging to reptile, aves and mammalia while it shows a tendency to decrease that of animals belonging to pisces and amphibia. 2. Glucose-6--phosphate increase oxygen consumption more than glucose in every species examined, while glucose-1-phosphate and glyceraldehyde-3-phosphate increase that of Rana nigromaculata only . In general m, it appears that phosphosugars are more effective as a respiratory substrate to those species which have less endogenous respiration than to those having larger endogenous respiration. 3. Similar patterns of free amino acid distribution and the relative amount are found among the species and in every species examined glutamic acid is detected in the larges amount . ${\gamma}$-Amino butyric acid, glycine, alanine and aspartic acid are found in every species. 4. Ophicephalus showed less oxygen consumption than endogenous respiration when glutamate was added to the medium. When sodium fluoride was added, the oxygen consumption was some what increased . Such phenomenon wasnot found in the frog. 5. The result of histochemcial analysis of the brain showed that glycogen was abundantly present in the fish , amphibia , and especially in the reptile and that no distinctive grains of glycogen were found in the bird and mammal . From these facts, it may be supposed that anaerobic glycolysis as energy source dominates in fish and amphibia and aerobic respiration through the oxidation of glucose dominates in bird and mamal , the reptile occupying transitional position between these two categories. The way of obtaining energy for brain activity by the oxidation of glucose supplied from the circulating blood is seemed to be first acquired by reptile and the function is completed both in aves and mammal.

  • PDF

The EST Analysis and Transgene Expression System in Rice

  • Kim, Jukon;Nahm, Baek-Hie
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • The expressed sequence tags(ESTs) from immature seed of rice, Oryza sativa cv Milyang 23, were partially sequenced and analyzed by homology. As of 1998, the partial sequences of about 6,600 cDNA clones were analyzed from normal and normalized immature seed cDNA libraries. About 2,200 ESTs were putatively identified by BLASTX deduced amino acid sequence homology analysis. About 20% of them were putatively identified as storage proteins. Also the clones were highly homologous to genes involved particularly in starch biosynthesis, glycolysis, signal transduction and defenses. Compared to 35% of redundancy in the ESTs of normal cDNA library, that from the substracted library was 15%. The Korea Rice Genome Network is maintained to provide the updated information of sequences, their homologies and sequence alignments of ESTs. For the stable expression of transgene in rice, diverse vectors were developed for overexpression, targeting and gene dosage effect with transit peptides (Tp) and matrix attachment region (MAR) sequence from chicken lysozyme locus. The rice calli were transformed via Agrobacterium tumefaciens LBA4404(pSB1) with the triparental mating technique and selected by herbicide resistance. The green fluorescent protein(GFP) gene in expression vector under the control of rbcS promoter-Tp was overexpressed upto 10 % of the total soluble protein. In addition, the Tp-sGFP fusion protein was properly processed during translocation into chloroplast. The expression of sGFP in the presence of MAR sequences was analyzed with Northern and immunoblot analysis. All the lines in which sGFP transgene with MAR sequence, showed position independent and copy number-dependent expression, while the lines without MAR showed the varied level of expression with the integration site. Thus the MAR sequence significantly reduced the variation in transgene expression between independent transformants.

  • PDF

Gene Expression Profile and Its Interpretation in Squamous Cell Lung Cancer

  • Park, Dong-Yoon;Kim, Jung-Min;Kim, Ja-Eun;Yoo, Chang-Hyuk;Lee, Han-Yong;Song, Ji-Young;Hwang, Sang-Joon;Yoo, Jae-Cheal;Kim, Sung-Han;Park, Jong-Ho;Yoon, Jeong-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.273-278
    • /
    • 2006
  • 95 squamous cell lung carcinoma samples (normal tissue: 40 samples, tumor: 55 samples) were analyzed with 8 K cDNA microarray. 1-way ANOVA test was employed to select differentially expressed genes in tumor with FDR<0.01. Among the selected 1,655 genes, final 212 genes were chosen according to the expression fold change and used for following analysis. The expression of up-regulated 64 genes was verified with Reverse Transcription PCR and 10 genes were identified as candidates for SCC markers. In our opinion, those candidates can be exploited as diagnostic or therapeutic purposes. Gene Ontology (GO) based analysis was performed using those 212 genes, and following categories were revealed as significant biological processes: Immune response (GO: 0006955), antigen processing (GO: 0030333), inflammatory response (GO: 0006954), Cell adhesion (GO: 0007155), and Epidermis differentiation (GO: 0008544). Gene set enrichment analysis (GSEA) also carried out on overall gene expression profile with 522 functional gene sets. Glycolysis, cell cycle, K-ras and amino acid biosynthesis related gene sets were most distinguished. These results are consistent with the known characteristics of SCC and may be interconnected to rapid cell proliferation. However, the unexpected results from ERK activation in squamous cell carcinoma gripped our attention, and further studies are under progress.

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Plays a Key Role in Controlling Cell Fate Via Inhibition of Caspase Activity

  • Jang, Mi;Kang, Hyo Jin;Lee, Sun Young;Chung, Sang J.;Kang, Sunghyun;Chi, Seung Wook;Cho, Sayeon;Lee, Sang Chul;Lee, Chong-Kil;Park, Byoung Chul;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.559-563
    • /
    • 2009
  • Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.