• Title/Summary/Keyword: Glycolic acid

Search Result 164, Processing Time 0.025 seconds

The New Strategy of Formulation of Human Growth Hormone Aggregate within PLGA Microspheres for Sustained Release

  • Kim, Hong-Gi;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.541-545
    • /
    • 2000
  • For the sustained release formulation of recombinant human growth hormone (rhGH), dissociable rhGH aggregates were microencapsulated within poly(D,L-lactic-co-glycolic acid) [PLGA] microparticles. rhGH aggregates with 2 - 3 m Particle diameter were first produced by adding a small volume of aqueous rhGH solution into a partially water miscible organic solvent phase(ethyl acetate) containing PLGA. These rhGH aggregates were then microencapsulated within PLGA polymer phase by extracting ethyl acetate into an aqueous phase pre-saturated with ethyl acetate. The resultant microparticles were 2 - 3 m in diameter similar to the size of rhGH aggregates, suggesting that PLGA polymer was coated around the protein aggregates. Release profiles of rhGH from these microparticles were greatly affected by changing the volume of the incubation medium. The release rhGH species consisted of mostly monomeric form with having a correct conformation. This study reveals that sustained rhGH release could be achieved by microencapsulating reversibly dissociable protein aggregates within biodegradable polymers.

  • PDF

고분자 미립구를 사용한 비뇨기과, 성형외과적 주사 요법용 생체 재료 개발

  • Jo, Ui-Ri;Gang, Seon-Ung;Kim, Byeong-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.591-594
    • /
    • 2003
  • In the present study, we developed a filling material composed of poly(lactic-co-glycolic) acid (PLGA) microspheres with applications in the treatment of facial wrinkle and urinary incontinence and studied the feasibility of injecting the filling materials in animal models for plastic surgical and urological applications. Former filling materials including Teflon, Silicon, and collagen have shown a few shortcomings such as inflammation reaction, particles migration or volume decrease. We injected PLGA microspheres into the subcutaneous dorsum of mice. Injected volume was constantly maintained after implanting. We hardly found either inflammation reaction or migration. This material overcomes the problems of the current filling materials and could be utilized as a new filling material for plastic surgical and urological applications.

  • PDF

Peripheral Nerve Regeneration by Asymmetrically Porous PLGA/Pluronic F127 Nerve Guide Conduit

  • Oh, Se-Heang;Kim, Jun-Ho;Song, Kyu-Sang;Jeon, Byeong-Hwa;Lee, Il-Woo;Lee, Jin-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.181-181
    • /
    • 2006
  • We developed a novel method to fabricate a nerve guide conduit (NGC) with the porosity of submicron pore sizes (to prevent fibrous tissue infiltration) and hydrophilicity (for effective oxygen and nutrient permeation) using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method designed by our laboratory. It was recognized that the hydrophilized PLGA/F127 (3 wt%) tube can be a good candidate as a NGC from the analyses of its morphology, mechanical strength, hydrophilicity, model nutrient permeability and in vivo nerve regeneration behavior using a rat model.

  • PDF

Drug Release Characteristics of Biodegradable Polymers for Stent Coating (스텐트 코팅용 생분해성 고분자의 약물 방출 특성)

  • 강혜수;김진설;김동운;강병철;이봉희;김범수
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.107-110
    • /
    • 2003
  • Biodegradable polymers, poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate) (PHB), and medium chain length polyhydroxyalkanoates (MCL-PHA) containing rose bengal (model drug) were coated onto the surface of stainless steel (stent materials) and their in vitro release characteristics were investigated. Drug release increased with; decreasing PLGA concentration, increasing rose bengal concentration, and Increasing dip-coating duration. The order of drug release from the polymer coating was: PHB > PLGA > MCL-PHA. These results suggest that drug release can be controlled by: changing the concentration and type of polymer, the drug concentration, and the dip-coating duration.

Preparation of Porous PLGA Microfibers Using Gelatin Porogen Based on a Glass Capillary Device (젤라틴 기공유도물질과 유리모세관 장치를 이용한 다공성 PLGA 미세섬유의 제조)

  • Kim, Chul Min;Kim, Gyu Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • We present a method of fabricating poly (lactic-co-glycolic acid) (PLGA) porous microfibers using a pore template. PLGA microfibers were synthesized using a glass capillary tube in a poly-(dimethylsiloxane) (PDMS) microfluidic chip. Gelatin solution was used as a porous template to prepare pores in microfibers. Two phases of PLGA solutions in different solvents-DMSO (dimethyl sulfoxide) and DCM (dichloromethane)-were used to control the porosity and strength of the porous microfibers. The porosity of the PLGA microfibers differed depending on the ratio of flow rates in the two phases. The porous structure was formed in a spiral shape on the microfiber. The porous structure of the microfiber is expected to improve transfer of oxygen and nutrients, which is important for cell viability in tissue engineering.

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

A Novel Deposition Method of PLGA Nanoparticles on Coronary Stents

  • Joo, Jae-Ryang;Nam, Hye-Yeong;Nam, So-Hee;Baek, In-Su;Pakr, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1085-1087
    • /
    • 2009
  • Bare metal stents which were used to treat coronary artery disease have several biochemical problems. Polymerbased drug-eluting stents (DES) have opened up a new paradigm in the treatment of in-stent restenosis. Many studies and research programmes have proved that DES can prevent restenosis. In our study, paclitaxel-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been deposited along the three dimensional scaffold of coronary stents by a method using self-assembling properties of colloidal particles. We found that the nanoparticles were deposited uniformly and closely packed. The amount of paclitaxel was easily controlled by the drug content of the nanoparticles and the deposition count.

Mechanical properties, Biodegradability and Biocompatibility of Coronary Bypass Artery with PCL Layer and PLGA/Chitosan Mats Using Electrospinning

  • Nguyen, Thi-Hiep;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.2-45.2
    • /
    • 2009
  • A coronary graft fabricated from PLGA poly (lactic-co-glycolic acid) and chitosan electros puns deposited on poly caprolactone (PCL) electro spun tube. Mechanical properties of tube were evaluated through extruder machine depending on thickness of vessel wall. Biocompatible properties were evaluated by SEM morphology, amount of cell counting and MTT assay method for depending on culture days (1, 3, 5 days). MTT assay, counting cell and SEM morphology showed that cells were fast growth and immigration after 5 days. Biodegradability was monitored through loss weigh method for incubator days.

  • PDF

The Effect of Complexing Agent on the Deposit Charateristics in the Electroless Nickel Plating Solution (무전해 니켈 도금액에서 착화제가 도금피막에 미치는 영향)

  • Jeon Jun-Mi;Koo Suck-Bon;Lee Hong-Kee;Park Hae-Duck;Shim Su-Sap
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.326-334
    • /
    • 2004
  • Deposit charateristics of Electroless nickel(EN) were investigated with various complexing agents. As expected, the deposition rate of nickel is increased with pH and that of Phosphorous is decreased with pH. The result of SEM investigation shows that the rough surface crystallization is appeared with pH. It is show that the surface resistance of EN deposit is decreased with pH at 85$^{\circ}C$.