• Title/Summary/Keyword: Glycogen concentration

Search Result 80, Processing Time 0.023 seconds

Utilization of Supercompensated Glycogen of Hindlimb Muscles during Strenous Exercise in Rats (운동부하 흰쥐의 하지골격근에서 과축적 당원의 이용양상)

  • Jun, Chun-Bae;Ahn, Jong-Chul;Song, Dae-Heup;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.137-154
    • /
    • 1997
  • The aim of the present investigation has, been to evaluate the depletion pattern of the supercompensated glycogen of hindlimb muscles during strenous exercise in rats. The plan of the maximizing muscle glycogen stores is based on the fact that a glycogen-depleted muscle by exercise will have an increased avidity for glycogen when exposed to a high carbohydrate diet. The glycogen concentration of soleus, red gastrocnemius and plantaris muscle, and liver was measured at 0, 30 and 60 minutes during treadmill exercise. The experimental animals were divided into 5 group - Normal(N), Control(C), 1Hour(1HR:after 1hour of glucose ingestion), 2Hour(2HR:after 2hour of glucose ingestion) and Exercise-1Hour(EX-1HR:glucose ingestion after 1 hour of preloading treadmill exercise)group - for glycogen storage study. The glycogen concentration of soleus, red gastrocnemius and plantaris muscles in N group was $4.57{\pm}0.34$, 5.11+0.24 and $6.55{\pm}0.20mg/gm\;wet\;wt.$, respectively. The glycogen concentration of soleus and red gastrocnemius in EX-1HR group were about 1.9 and 1.8 times than that of N group, respectively, but the concentration of plantaris was not higher than that of N group. The glycogen concentration of liver in N group was $41.0{\pm}1.47mg/gm\;wet\;wt.$ and the concentration of the overnight fasted C group was only 2.9% of the value of N group. The level of glycogen concentration of liver in the other glucose ingested groups(1HR, 2HR, including EX-1HR) was within 19 - 32% of that of N group. The blood glucose concentration of EX-1HR group was higher than that of N group, the plasma free fatty acid concentration of C and 2HR group was higher than that of N group, and the plasma insulin concentration of EX-1HR group was higher than that of N group. The concentrations of supercompensated glycogen of soleus and red gastrocnemius were rapidly decreased during 30 minutes of exercise but there was almost no changes of the concentration during the other 30 minutes of continuing exercise. The concentration of N group during 30 minutes of exercise was decreased but more slowly than those of EX-1HR group. The remaining level of glycogen after 60 minutes of exercise in EX-1HR group was higher than that of N group. Taken together, the mobilization of endogenous muscle glycogen at the first stage of exercise was proportioned to the initial level of glycogen concentration, and later on, when exercise continued, the muscle glycogen level was stabilized. And the remaining level of supercompensated muscle glycogen after 60 minutes of exercise was higher than that of normally stored glycogen level. The mobilization of the glycogen stroed in slow and fast oxidative muscle fibers is faster than in the fast glycolytic muscle fibers during strenous exercise.

  • PDF

The Charateristics of Glycogen Metabolism of Diaphragm in Rats (운동부하시 흰쥐 호흡근의 당원 대사)

  • Nam, Bok-Hyun;Kim, Eun-Jung;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.46-52
    • /
    • 1997
  • Diaphragm is thought to play the most important role in breathing and has a substantially greater proportion of slow oxidative and fast glycolytic fibers, and low proportion of fast oxidative fibers. The respiratory muscle, diaphragm, has the functional characteristics of slow speed of contraction, high resistance to fatigue and the ability to respond to intermittent ventilatory loads, for example of exercise. In the present study, the characteristics of the metabolism (depletion and repletion) of glycogen and the structural changes of diaphragm during depletion and repletion of glycogen were observed in rats. For comparison, the red gastrocnemius muscle which has a greater proportion of fast oxidative glycolytic (FOG) and slow oxidative (SO) fibers, and low proportion of fast glycolytic (FG) fiber, was also studied. The glycogen concentration of diaphragm in overnight fasted rats was $2.30{\pm}0.14mg/gm$ wet weight. The values of glycogen concentration at 60, 90 and 120minutes of treadmill exercise loaded rats was significantly decreased compared to that of the overnight fasted rats. There was no significant difference among the glycogen concentrations of diaphragm at 60, 90 and 120minutes of exercises. The glycogen concentration of diaphragm was decreased to $1.12{\pm}0.17$ from $2.30{\pm}0.14mg/gm$ wet weight by treadmill exercise. The glycogen depletion rate of diaphragm during exercise was faster than that of red gastrocnemius in both of the first 60minutes and 120minutes duration of exercise. The glycogen repletion of diaphragm after intragastric glucose administration by stomach tube was studied in control and exercise groups. The glycogen concentration was significantly increased after glucose administration in both of control and exercise groups. All of the concentration of exercise group at 60, 120 and 180minutes after glucose administration was significantly higher than those of control group. In conclusion, one of the characteries of diaphragm in glycogen metabolism is fast glycogen depletion during exercise, and slowness of glycogen repletion after glucose ingestion in rats.

  • PDF

Regulation of Glycogen Concentration by the Histidine-Containing Phosphocarrier Protein HPr in Escherichia coli

  • Koo, Byung-Mo;Seok, Yeong-Jae
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.24-30
    • /
    • 2001
  • In addition to effecting the catalysis of sugar uptake, the bacterial phosphoenolpyruvate::sugar phosphotransferase system regulates a variety of physiological processes. In a previous paper [Seok et al.,(1997) J. Biol. Chem. 272, 26511-26521], we reported the interaction with and allosteric regulation of Esiherichia coli glycogen phosphorylase activity by the histidine-containing phosphocarrier protein HPr in vitro. Here, we show that the specific interaction between HPr and glycogen phosphorylase occurs in vivo. To address the physiological role of the HPr-glycogen phosphorylase complex, intracellular glycogen levels were measured in E. coli strains transformed with various plasmids. While glycogen accumulated during the transition between exponential and stationary growth phases in wildtype cells, it did not accumulate in cells overproducing HPr or its inactive mutant regardless of the growth stage. From these results, we conclude that HPr mediates crosstalk between sugar uptake through the phosphoenolpyruvate:sugar phosphotransferase system and glycogen breakdown. The evolutionary significance of the HPr-glycogen phosphorylase complex is suggested.

  • PDF

Glycogen distribution of germ cells and Sertoli cells of seminiferous tubules in Jindo dog (진도견 정세관의 정세포와 Sertoli 세포내 glycogen의 분포)

  • Park, Young-seok;Lee, Seong-ho
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.521-529
    • /
    • 1996
  • In an effort to obtain basic data of carbohydrate metabolism during spermiogenesis of the sexually-matured Jindo dog, the glycogen distribution in the testis was investigated by light and transmission electron microscopy. Periodic acid thiocarbohydrazide silver proteinate physical development(PA-TCH-SP-PD) staining method provided better results in the detection of glycogen granules from Sertoli cells and germ cells than the periodic acid schiff(PAS) staining method did. Pre-treatment of the tissue sections with ${\alpha}$-amylase elicited a significant decrease in PA-TCH-SP-PD stained granules, which suggested that the stained granules were of glycogen origin. High concentration of the glycogen granules were observed in the Sertoli cells, especially in its column, sheet-like processes, club-like processes, and tubular processes. The glycogen granules were unevenly distributed in some Sertoli cell columns. These results strongly indicated that the Sertoli cells of Jindo dogs showed vigorous activity of carbohydrate metabolism.

  • PDF

Effect of Denervation on Glucose and Glycogen of Skeletal Muscle of Uromastix hardwickii

  • Javed, Masood H.;Shaikh, Hilal A.
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.323-325
    • /
    • 1987
  • The concentrations of glucose and glycogen in the normal gastrocnemius muscles of Uromastix hardwickii were $88.82{\pm}4.52\;mg/100\;gm$ and $158.98{\pm}23.19\;mg/100gm$ of wet weight of the muscle, respectively. 14-days denervation period has no any effect on glucose contents while the glycogen concentration was decreased to 1/3 of the normal control innervated muscles.

  • PDF

Effects of Dietary Fatty Acid Composition on Pro- and Macro-Glycogen Utilization and Resynthesis in Rat Skeletal Muscle (식이 지방산 종류가 운동 시 조직 내 Pro-및 Macro-Glycogen의 동원 및 재합성에 미치는 영향)

  • Lee, Jong-Sam;Kim, Jae-Chul;Kwon, Young-Woo;Lee, Jang-Kyu;Lee, Jeong-Pil;Yoon, Chung-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • The purpose of this study was to investigate that the effect of dietary fatty acid composition on pro- and macro-glycogen utilization and resynthesis. The analyses were further extended for different muscle fibers (type I, type II, & type IIb) as well as tissues (i.e., liver & heart). Total one hundred sixty Sprague-Dawley rats were used, and rats were randomly allocated into four experimental groups: animals fed standard chow diet (n=40), animals fed saturated fatty acid diet (n=40), animals fed monounsaturated fatty acid (n=40), and animals fed polyunsaturated fatty acid (n=40). Animals in each groups were further divided into five subgroups: sacrificed at REST (n=8), sacrificed at immediately after 3 hr swim exercise (P-0HR, n=8), sacrificed at one hour after 3 hr swim exercise (P-1HR, n=8), sacrificed at four hour after 3 hr swim exercise (P-4HR, n=8), and sacrificed at twenty-four hour after 3 hr swim exercise (P-24HR, n=8). Soleus (type I), red gastrocnemius (type IIa), white gastrocnemius (type IIb), liver, and heart were dissected out at appropriated time point from all animals, and were used for analyses of pro- & macro-glycogen concentrations. After 8 weeks of dietary interventions, there was no significant difference in body mass in any of dietary conditions (p>.05). After 3 hr swim exercise, blood lactate level was higher compared to resting conditions in all groups, but it was returned to resting value after 1 hr rest (p<.05). Free fatty acid concentration was higher in all high fat fed groups(regardless of fatty acid composition) than CHOW consumed group. At rest, pro- & macro-glycogen concentration was not different from any of experimental groups (p>.05). Regardless of forms of glycogen, the highest level was observed in liver (p<.01), and most cases of supercompensation after 3hr exercise observed in this study were occurred in CHOW fed tissues. Except heart muscle, all tissues used in this study showed that pro- and macro-glycogen concentration was significantly decreased after 3 hr exercise. Based on these results, two conclusions were made: first, there is no different level of glycogen content in various tissues regardless of types of fatty acids consumed and second, the highest mobilization rate would be demonstrated from CHOW fed animals compare to animals that consumed any kinds of fatty acid diet if prolonged exercise is applied.

The effects of endurance training and L-arginine supplementation on nitric oxide production, muscle glycogen concentration, and endurance performance

  • Choi, Sung-Keun;Park, Sok;Lee, Cheon Ho
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The purpose of this study was to examine the effects of endurance training and prolonged L-arginine supplementation on blood glucose, blood insulin, muscle glycogen, muscle glycogen synthase (GS), muscle nitric oxide (NO), muscle nitric oxide synthase (NOS), endurance performance. We equally divided 36 Sprague-Dawley mice to be distributed into control group, L-NMMA treated group and L-arginine treated group. The L-arginine treated group and L-NMMA treated group consumed 10 mg/kg/day of L-arginine and 5 mg/kg/day of L-NMMA for 6 weeks period. Mice of control group, L-arginine treated group, and L-NMMA treated groups performed swimming exercise training for 60 min once a day, 5 days per week for 6 weeks. Blood glucose had tendency to increase in L-arginine treated group than the control group, and insulin significantly increased in L-arginine treated group than the control group. L-arginine treated group showed significant increase in glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to the control group. Whereas L-NMMA treated group showed the lowest glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to control group and L-arginine treated group. Exhaustive swimming time had tendency to increase in L-arginine treated group compared to the value for control group. These reults indicate that endurance training and prolonged L-arginine supplementation appear to be effective in exhancing nitric oxide production, glycogen concentration and endurance performance.

Hydroxybrazilin was examined for its effects on glycogen synthesis in primary cultured rat hepatocytes.

  • Moon, Chang-Kiu;Kim, Seonh-Gon;Lee, Soo-Hwan;Ha, Bae-Jin
    • Toxicological Research
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • Hydroxybrazilin was examined for its effects on glycogen synthesis in primary cultured rat hepatocytes. At 10-6 M hydroxybrazilin, glycogen synthesis was increased in basal state, but not in insulin stimulated state. However, any signiFicant changes were nor observed at 10-5 M hydroxybrazilin in both states. The glycogen synthesis was rather suppressed at 10-5M hydroxybrazilin. It was also observed that hydroxybrazilin increased insulin sensitivity but not insulin responsiveness at 10-5M concentration. These results suggest that hydroxybrazilin might exert hypoglycemic action through its effects on insulin receptor and post receptor events.

  • PDF

Effects of Ammonia Concentration on Histological and Physiological Status in Black Seabream (Acanthopagrus schlegeli)

  • KWON Joon Yeong;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.828-836
    • /
    • 1996
  • The histological changes of gill, liver, spleen and muscle, and respiration and blood variables and liver glycogen content were examined in black seabream, Acanthopagrus schlegeli. Fish were exposed to a high level of total ammonia nitrogen (10.4 mg/l) and recovered from exposure $(0.4{\pm}0.2mg/l)$ in a closed recirculating seawater system. In the process of exposure, mortality was $9\%$, and hyperplasia, necrosis or inflammation appeared in all tissues except for muscle. Oxygen consumption was decreased by $49\%$, and red blood cell (RBC) number, hematocrit and hemoglobin concentration were significantly decreased, while plasma glucose contents, activities of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) increased. Liver glycogen content significantly increased from $6.6\%\;to\;10.4\%$. A large amount of hemosiderin was observed in the splenic tissue. During the recovery period, RBC number, hematocrit, hemoglobin concentration, GOT and GPT activities were returned to the normal status. Histological status of liver tissue was returned to the normal, but liver glycogen content was not recovered. During the recovery period, spleen melanin-macrophages temporarily increased, but subsequently decreased to the normal status.

  • PDF

Effect of Hyperglycemia and Hyperlipidemia on Cardiac Muscle Glycogen Usage during Exercise in Rats (고혈당과 고지질혈증이 운동중 심근의 당원대사에 미치는 영향)

  • Lee, Suck-Kang;Kim, Eun-Jung;Kim, Yong-Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 1998
  • Rats were studied during 45 minutes treadmill exercise to determine the effects of hyperglycemia and hyperlipidemia on the utilization of cardiac muscle glycogen, and the utilization of diaphragm muscle glycogen was also studied for comparing to cardiac muscle. The hyperglycemia was produced by ingestion of 25% glucose solution(lml/100gm, BW) and the hyperlipidemia by 10% intralipose ingestion(lml/l00gm, BW) with intraperitoneal injection of heparin(500 IU) 15 minutes before treadmill exercise. The mean blood glucose concentrations(mg/dL) in control and hyperglycemic rats were 110 and 145, respectively, and the mean plasma free fatty acid concentrations(${\mu}Eq/L$) in control, control exercise(control-E) and hyperlipidemia exercise(HL-E) rats were 247, 260 and 444, respectively. In the hyperglycemic trial, the cardiac muscle glycogen concentration was not significantly decreased by the exercise but the concentration in control rats was decreased to 73.9%(p<0.05). The glycogen concentration of diaphragm was significantly decreased in both groups by the exercise, but the hyperglycemia decreased the glycogen utilization by approximately 10% compared to the control. The cardiac muscle glycogen concentration was not decreased by the exercise in control and hyperlipidemic rats but the utilization of glycogen in hyperlipidemic rats is lower than that of the control. These data illustrate the sparing effect of hyperglycemia on cardiac muscle glycogen usage during exercise, but the effect of hyperlipidemia was not conclusive. In the skeletal muscle, the usage of glycogen by exercise was spared by both hyperglycemia and hyperlipidemia.

  • PDF