• 제목/요약/키워드: Glycine max L.

검색결과 432건 처리시간 0.028초

Comparison of physiological responses soybean [Glycine max (L.) Merill] of different irrigation Periods

  • Kim, Eun Hye;Chung, Ill Min
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.195-195
    • /
    • 2017
  • The water in the crop cultivation shows difference according to the variety of crop, cultivations period and climatic condition. The growth and development, quantity and fruit enlargements are affected by soil water conditions. In previous study, leaf area and photosynthesis are decreased by lower soil moisture. Other research reported that excess moisture condition at vegetative and reproductive growth period in cultivation of soybean caused highest reduction in crop growth rate (CGR) and dry weights of plant parts. In particular, the damage was bigger during vegetative growth stage than reproductive growth period. Soybean (Glycine max (L.) Merill) is useful and popular crop throughout the world. It is very popular crop in Korea, China, Japan and other Asian countries. Soybeans used in various way including soybean sprouts, paste, soymilk, oil and tofu. Two soybean cultivars grown in four different irrigation conditions were determined for physiological responses. In this study, we examined leaf area (LA), leaf dry weight (LDW), specific leaf area (SLA), root dry weight (RDW) and shoot height (SH) in different water conditions. 50mL/9day irrigation periods showed the lowest contents in LA, LDW, RDW, SH. Water deficit caused increase of leaf Water saturation deficits (WSD), Cheongjakong 3 and Taekwangkong showed increase of leaf water saturation deficits (WSD) in drought conditions and leaf water potential and stomatal conductance were decreased. Photochemical efficiency was decreased in 50mL/1day irrigation condition while, there was decrease of growth and development in 50mL/9day with drought.

  • PDF

Impact of Storage Stability on Soybean (Glycine max L.) Flour Stored in Different Conditions and Package Materials

  • Park, Sung-Kyu;Prabakaran, Mayakrishnan;An, Yeonju;Kwon, Chang;Kim, Soyeon;Yang, Yujin;Kim, Seung-Hyun;Chung, Ill-Min
    • 한국작물학회지
    • /
    • 제63권4호
    • /
    • pp.338-359
    • /
    • 2018
  • Soybean (Glycine max L.), a major part of Asian diet, is consumed primarily for its nutritional value. However, poor storage stability often leads to loss of nutritional value or deterioration in quality. This study focused on the storage stability of soy flour obtained from raw and roasted "Saedanbaek" soybeans packed in polyethylene (PE) and polypropylene (PPE) film bags that were stored at $4^{\circ}C$, $20^{\circ}C$ and $45^{\circ}C$ for 48 weeks. The early acid values (diene and p-anisidine) of raw soybean flour (RSF) at high temperature (HT) were higher than those at refrigerated temperature (RFT) and room temperature (RT) during 48 and 12 to 36 weeks, respectively. In the case of roasted soybean flour (ROSF), which was stored at RFT and RT, the acid and conjugated diene values gradually increased after 24 weeks. In RSF, the peroxide value increased since the beginning of the $24^{th}$ week. The p-anisidine value also increased during 12 to 36 weeks but was much lower than the values obtained from HT storage. As the peroxide values decreased, the p-anisidine values increased, indicating an inverse relationship. Lipoxygenase activity of ROSF at all storage conditions was lower than RSF. Several differences were observed between the packing materials used. This study could, therefore, provide useful information for the industrial use of soybean flour (SF).

Purification and Characterization of S-adenosylmethionine Synthetase from Soybean (Glycine max) Axes

  • Kim, Dae-Gun;Park, Tae-Jin;Kim, Jong-Yeol;Cho, Young-Dong
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.100-106
    • /
    • 1995
  • S-adenosylmethionine (SAM) synthetase was purified to homogeneity from soybean (Glycine max) axes. The enzyme was purified 216-fold with a 1.5% yield by ammonium sulfate fractionation, acetone fractionation, ion exchange chromatography with DEAE-sephacel, gel filtration with Sephacryl S-300, and afffinity chromatography with ATP-agarose. The enzyme activity reached a maximum 3 days after germination. SAM synthetase had a subunit molecular weight of 57,000 daltons from a silver stained single band on SDS-PAGE. The molecular weight of the enzyme was 110,000 daltons from Sephacryl S-300 gel filtration. The enzyme was composed of two identical subunits. The $K_m$ values of the enzyme for L-methionine and ATP were 1.81 and 1.53 mM, respectively. The enzymatic activity was not affected by polyamines, agmatine, or SAM analogues, but was inhibited by SAM. The inhibition pattern was showed non-competitive for L-methionine and uncompetitive for ATP. The activity of SAM synthetase was inhibited by thiol-blocking reagents. The enzyme was induced by treatment with $10^{-3}$ M putrescine at germination. Experimental data revealed a possible novel regulation mechanism of polyamine biosynthesis through several endogenous intermediates.

  • PDF

Positional mapping for foxglove aphid resistance with 180k SNP array in soybean [Glycine max (L.) Merr.]

  • Park, Sumin;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Jung, Jin Kyo;Bilyeu, Kristin D.;Lee, Jeong-Dong;Kan, Sungtaeg
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.145-145
    • /
    • 2017
  • Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative genes to foxglove aphid resistance in wild soybean, PI 366121 (Glycine soja Sieb. and Zucc.). One hundred and forty-one F4:8 recombinant inbred lines developed from a cross between susceptible variety, Williams 82 and foxglove aphid resistance wild soybean, PI 366121 were used. The two type of resistance response, antibiosis and antixenosis resistance were evaluated through choice and no-choice test, graded by the degree of total plant damage and primary infestation leaf damage; a genome-wide molecular linkage map was constructed with 29,898 single-nucleotide polymorphism markers utilizing a Axiom(R) 180K soyaSNP array. Using inclusive composite interval mapping analysis for foxglove aphid resistance, one major candidate QTL on chromosome 7 was identified. The major QTL on chromosome 7 showed both antixenosis and antibiosis resistance responses. The newly identified major QTL was consistent with previously reported QTL, Raso2, which showed around 5 times narrow down interval range with 8 candidate genes. Furthermore, total 1,115 soybean varieties including Glycine soja and Glycine max were exposed to germplasm screening, and 31 varieties, which showed significant antibiosis type foxglove aphid resistance were identified. This result could be useful in breeding for new foxglove aphid resistant soybean cultivars and developing novel insecticides.

  • PDF