• Title/Summary/Keyword: Glyceraldehyde-3-Phosphate Dehydrogenase gene

Search Result 67, Processing Time 0.023 seconds

PCR-mediated Recombination of the Amplification Products of the Hibiscus tiliaceus Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase Gene

  • Wu, Linghui;Tang, Tian;Zhou, Renchao;Shi, Suhua
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.172-179
    • /
    • 2007
  • PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical lowcopy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCRmediated recombination.

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak

  • Li, Sheng-Wei;Jiang, Ming-Feng;Liu, Yong-Tao;Yang, Tu-Feng;Wang, Yong;Zhong, Jin-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1673-1679
    • /
    • 2008
  • In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.

Cloning and Sequence Analysis of a Glyceraldehyde-3-phosphate Dehydrogenase Gene from Ganoderma lucidum

  • Fei Xu;Zhao Ming Wen;Li Yu Xiang
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.515-522
    • /
    • 2006
  • A cDNA library of Ganoderma lucidum has been constructed using a Zap Express cloning vector. A glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by PCR. By comparison of the cDNA and the genomic DNA sequences, it was found that the complete nucleotide sequence encodes a putative polypeptide chain of 338 amino acids interrupted by 6 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the GPD proteins from yeast and filamentous fungi. The promoter region contains a CT-rich stretch, two CAAT boxes, and a consensus TATA box. The possibility of using the gpd promoter in the construction of new transformation vectors is discussed.

Evolutionary History of Two Paralogous Glyceraldehyde 3-Phosphate Dehydrogenase Genes in Teleosts

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.3
    • /
    • pp.177-181
    • /
    • 2008
  • Glyceraldehyde 3-phosphate dehydrogenase(GAPDH) is a key enzyme for carbohydrate metabolism in most living organisms. Recent reports and our own searches of teleost species in publicly available genomic databases have identified at least two distinct GAPDH genes in a given species. The two GAPDH genes are located on the same chromosome in teleosts, whereas they are located on the different chromosomes in mammals. Thus, we reconstructed a phylogenetic tree to better understand the evolutionary history of the GAPDH genes in the vertebrate lineage. Our phylogenetic analysis revealed unambiguously that the two GAPDH genes of teleosts are phylogenetically closely affiliated to one of the cytosolic GAPDH and spermatogenic GAPDH-S of mammals. This indicates that the two paralogous GAPDH genes shared a common ancestor and subsequently underwent a gene duplication event during early vertebrate evolution. However, GAPDH-S of teleosts showed significant differences in the polypeptide residues and tissue distribution of its mRNA transcripts from that of mammals, implying they have undergone a different history of functionalization.

Purification and Cloning of o Protein Secreted from Lactobacillus acidophilus

  • Han, Seo-Yeong;Lee, Yeong-Seon;Im, Jeong-Bin;Hwang, Deok-Su
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.355-359
    • /
    • 1998
  • Among the proteins secreted from Lactobacillus acidophilus KCTC 3151, a 36 kDA and 24 kDa protein, whose amounts were relatively abundant, were purified and their N-terminal amino acid sequences determined. The N-terminal amino acid sequence of 36 kDa protein exhibited high homology with thymidine phosphorylase and glyceraldehyde-3-phosphate dehydrogenase. The N-terminal amino acid sequence of the 24 kDa protein did not show significant homology with proteins in Protein Data Base nor Gene Bank. Nucleotide sequence of the gene encoding 36 kDa protein indicates that the protein possesses the domains for a-helical, phosphate binding and pyrimidine binding sites, which are also shown in thymidine phosphorylases. Also, the protein contains conserved domains of dehydrogenase II and III. However, the activity of thymidine phosphorylase or glyceraldehyde-3-puospnate dehydrogenase could not be detected in the purified fractions of the 36 kDa protein.

  • PDF

Molecular cloning and expression of glyceraldehyde-3-phosphate dehydrogenase gene under environmental stresses in sweetpotato

  • Kim, Young-Hwa;Song, Young-Sun;Huh, Gyung-Hye
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a main enzyme in the glycolytic pathway, is involved in cellular energy production and regarded as a housekeeping gene. Previously, cytosolic GAPDH was selected as the most significantly abundant gene in EST library of sweetpotato suspension cells. In this study, a full-length of cDNA clone (IbGAPDH) encoding GAPDH was isolated from suspension-cultured cells of sweetpotato (Ipomoea babatas), and its expression was investigated with a view to understanding the physiological function of GAPDH in relation to environmental stresses. IbGAPDH encoded a 36.9 kDa polypeptide consisting of 337 amino acids. When the deduced amino acid of IbGAPDH was compared with other higher plants, IbGAPDH showed high homology with cytosolic GAPDH. The mRNA level of IbGAPDH significantly increased under environmental stresses, such as $H_2O_2$, MV and cold treatments. Among them, the transcript level of IbGAPDH gene was the highest under cold stress. Further investigation of the transcription level under $10^{\circ}C$ or $15^{\circ}C$ was performed with different tissues of sweetpotato. The transcription of IbGAPDH was increased by cold stress with tissue-specificity, moreover, showed different patterns according to temperature.

New Finding of Golovinomyces salviae Powdery Mildew on Glechoma longituba (Lamiaceae), Besides Its Original Host Salvia spp.

  • In-Young Choi;Lamiya Abasova;Joon-Ho Choi;Young-Joon Choi;Hyeon-Dong Shin
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.239-243
    • /
    • 2023
  • The Golovinomyces biocellatus complex is known to consist of powdery mildew from the Golovinomyces genus, associated with host plants from the Lamiaceae family. Recent molecular phylogenetic analyses have resolved the taxonomic composition of this complex, and Golovinomyces biocellatus sensu stricto is considered to be a pathogen of Glechoma species, globally. However, this paper presents a new finding of Golovinomyces salviae on Glechoma longituba, besides its original host species of Salvia. This information was inferred by molecular phylogenetic analyses from the multi-locus nucleotide sequence dataset of intergeneric spacer (IGS), internal transcribed spacer (ITS), large subunit (LSU) of rDNA, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Further, the asexual morphology of this fungus is described and illustrated.

Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585

  • Jnawali, Hum Nath;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.146-152
    • /
    • 2010
  • Streptomyces clavuligerus NRRL3585 produces a clinically important $\beta$-lactamase inhibitor, clavulanic acid (CA). In order to increase the production of CA, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (gap) was deleted in S. clavuligerus NRRL3585 to overcome the limited glyceraldehyde-3-phosphate pool; the replicative and integrative expressions of ccaR (specific regulator of the CA biosynthetic operon) and claR (Lys-type transcriptional activator) genes were transformed together into a deletion mutant to improve clavulanic acid production. We constructed two recombinant plasmids to enhance the production of CA in the gap1 deletion mutant of S. clavuligerus NRRL3585: pHN11 was constructed for overexpression of ccaR-claR, whereas pHN12 was constructed for their chromosomal integration. Both pHN11 and pHN12 transformants enhanced the production of CA by 2.59-fold and 5.85-fold, respectively, compared with the gap1 deletion mutant. For further enhancement of CA, we fed the pHN11 and pHN12 transformants ornithine and glycerol. Compared with the gap1 deletion mutant, ornithine increased CA production by 3.24- and 6.51-fold in the pHN11 and pHN12 transformants, respectively, glycerol increased CA by 2.96- and 6.21-fold, respectively, and ornithine and glycerol together increased CA by 3.72- and 7.02-fold, respectively.

Construction of an Expression Vector System with the GAP Promoter in Saccharomyces cerevisiae (효모, Saccharomyces cervisiae의 GAP 유전자를 이용한 발현 벡터계의 개발)

  • 황요일;서애란;심상국;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.568-574
    • /
    • 1991
  • The cloned glyceraldehyde-3-phosphate dehydrogenase (GAP) gene of Saccharomyces cereviszae (Holland et al., 1983) has been characterized. Based on the communication, we have also cloned 2.1 kb CAP DNA fragment and modified this fragment as a portable promoter. Two yeast expression vectors, one is YCp type vector being maintained at low copy number (1 or 2) and the other is YEp type vector at high copy number, have been constructed with the GAP promoter and the PH05' gene as a reporter. Our plasrnids were introduc,ed into S. cerevisiae HY-1, which has been improved. The $Trp^+$ transformants expressed APase activity efficiently and showed high level of PH05' transcripts.

  • PDF