• Title/Summary/Keyword: Glutathione reductase

Search Result 407, Processing Time 0.043 seconds

Oxidative Stress and Antioxidant Activities of Intertidal Macroalgae in Korea

  • Park, Jung-Jin;Han, Tae-Jun;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • The oxidative stress level and antioxidant activities in two green algae (Ulva pertusa and Ulva linza), two brown algae (Agarum cribrosum and Dictyota dichotoma), and three red algae (Grateloupia lanceolata, Carpopeltis affinis, and Gracilaria verrucosa) collected from intertidal regions of Korea were assessed. In the two green algae, although the total glutathione content was not as high as that of the brown algae, the glutathione pool was extremely reduced, and the glutathione reductase (GRd)/glutathione peroxidase (GPx) activity ratio was high, which apparently plays an important role for protection against oxidative damage, as manifested by low lipid peroxidation. In the brown algae, which exhibited a low lipid peroxidation level that was comparable to the green algal species, the highest glutathione content, together with high GPx activity, appears to be the most important factor in their antioxidant protection. The red algal species exhibited extremely high lipid peroxidation levels. They also contained the lowest and most oxidized glutathione among the species, as well as the lowest GRd activity. In spite of the marked difference in the glutathione content, the significant difference in the activity of ${\gamma}$-glutamylcysteine ligase, the rate limiting enzyme for glutathione synthesis, among the species was not exhibited. Our results suggest that there is a significant difference in the levels of oxidative stress and antioxidant capacity among the algal species, and that the glutathione system, especially the efficiency of glutathione recycling, plays a vital role in antioxidative protection in algal species.

Effect of Terminalia chebula on Physiological Activity in Mice (가자(Terminalia chebula) 추출물이 마우스의 생리활성에 미치는 영향)

  • 박종옥;이승은
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.148-153
    • /
    • 2004
  • In this study, we investigated the effect of water, extract of Terminalia Chebula (TC) on physiological activity in mice. TC water extract showed hemagglutination against several different types of red blood cells. $LD_{50}$ of TC extract was 390 mg/kg (po). Treatment of TC water extract orally administered 200, 300 mg/kg daily for one week. Hepatic cytosolic enzymes, xanthine oxidase and aldehyde oxidase activities were significantly increased comparison with normal group. Treatment of TC water extract increased hepatic malondialdehyde (MDA) formation, and reduced glutathione content. We also found that the decreased activities of glutathione S-transferase and glutathione reductase but was not affected activities of $\gamma$-glutamylcysteine synthetase after treatment of TC water extract. These results suggested that increase of the hepatic lipid peroxide is caused by glutathione reduction.

Nutritional Source and Metabolism of an Essential Element Selenium

  • Suzuki, Kazuo T.
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.93-95
    • /
    • 2003
  • Selenium is an ultra trace essential element for the normal functioning body because of forming the active center of redox enzymes such as four kinds of glutathione peroxidases (GPx), thioredoxin reductase (TR) and 5'-iodothyronine deiodinase. However, the adequate range between deficient and excessive levels is very narrow. (omitted)

  • PDF

The Change of Glutathione Metabolism in Liver and Kidney of Cisplatin treated Rats (Cisplatin 투여 후 백서의 간 및 신장에서 Glutathione 대사의 변화)

  • Kim, Seong-Yong;Chung, Jae-Yong;Kim, Jae-Ryong;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.262-269
    • /
    • 1994
  • Glutathione (GSH) is a well-known antioxidative cellular component which is ubiquitous in nature. Several enzymes involved in GSH metabolism and recycling have been found to play important roles in detoxification of xenobiotics and free radicals. In this study, total GSH content, activity of GSH peroxidase and GSH reductase were measured in liver and kidney of cisplatin treated rats. Total GSH content (mM/g protein) of liver was higher in cisplatin treated rats ($1.51{\pm}0.28$) than of nontreated control ($0.95{\pm}0.28$), and in kidney, it was also higher in cisplatin treated rats ($0.87{\pm}0.20$) than that of control ($0.68{\pm}0.14$). The activity of GSH peroxidase (${\mu}M/mg$ protein/min) was lower in liver of cisplatin treated rats ($348.0{\pm}18.54$) than that of control ($415.5{\pm}53.15$), in kidney it was increase din cisplatin treated rats ($380.5{\pm}51.86$) compared to control ($327.3{\pm}20.36$). The activity of GSH reductase (${\mu}M/mg$ protein/min) was higher in liver of cisplatin treated rats ($3.09{\pm}0.88$) than that of control ($2.28{\pm}0.61$), in kidney it was also higher in cisplatin treated rats ($8.50{\pm}2.62$) than that of control ($3.30{\pm}1.10$). In summary, detoxification of ciplatin was revealed lesser effect in kidney as show increasion of GSH peroxidase and reductase and detoxification of cisplatin was expressed effectively in liver by increasing of GSH content and decreasing GSH peroxidase.

  • PDF

Effect of Se-methylselenocysteine on the Antioxidant System in Rat Tissues

  • Shin, Ho-Sang;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.267-274
    • /
    • 2010
  • We assessed the effect of Se-methylselenocysteine (MSC) treatment, at a dose of 0.75 mg/rat/day for 1 or 2 weeks, on the activities of antioxidant systems in Sprague-Dawley rat tissues. Significant changes in glutathione and antioxidant enzyme activities, with different patterns among tissues, were evidenced. Glutathione content and its reduction state in the liver, lung, and kidney were elevated upon MSC treatment, whereas they were significantly lowered in the spleen. Among the tissues exhibiting glutathione increase, there were different enzymatic responses: $\gamma$-glutamylcysteine ligase activity, the rate-limiting enzyme in the glutathione synthesis pathway, was increased in the liver, whereas the activities of the enzymes associated with glutathione recycling, namely, glutathione peroxidase, glutathione reductase, and glucose 6-phosphate dehydrogenase, were significantly increased in the lung and the kidney. The superoxide dismutase activity was decreased in all tissues upon MSC treatment, whereas catalase activity was increased in all tissues but the liver. Lipid peroxidation level was transiently increased at 1 week in the lung and the kidney, whereas it was persistently increased in the spleen. The increase was not evident in the liver. The results indicate that the MSC treatment results in an increase in the antioxidant capacity of the liver, lung, and kidney principally via an increase in glutathione content and reduction, which appeared to be a result of increased synthesis or recycling of glutathione via tissue-dependent adaptive response to oxidative stress triggered by MSC. The spleen appeared to be very sensitive to oxidative stress, and therefore, the adaptive response could not provide protection against oxidative damage.

Investigation of the Antioxidant Status in Multiple Myeloma Patients: Effects of Therapy

  • Mehdi, Wesen A.;Zainulabdeen, Jwan A.;Mehde, Atheer A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3663-3667
    • /
    • 2013
  • Background: Multiple myeloma is a malignant silent incurable plasma cell disorder. The present study aimed to assessed the activation of the oxidative stress pathway in afected patients Materials and Methods: Advanced oxidation protein products (AOPPs), malondialdehyde (MDA), adenosine deaminase (ADA), total antioxidant capacity (TAC) levels, glutathione, ascorbic acid (vitamin C), ${\alpha}$-tocopherol (vitamin E) in addition to related enzymes glutathione peroxidase (GSH-Px), glutathione reductase (GSH-R) and superoxide dismutase (SOD) were analyzed in sixty patients with multiple myeloma before and after one month treatment with induction therapy. Results: The results of the study showed a significant elevation in AOPPs, MDA, ADA levels in patients with multiple myeloma before and after treatment in comparison to healthy control samples In contrast TAC glutathione, vitamin C and E, and the antioxidant enzymes levels were decreased significantly. On comparing samples of MM patients after treatment, there was significant increase of TAC glutathione, vitamin C and E, and the antioxidant enzymes in parallel with decreasing AOPPs, MDA and ADA levels in comparison with samples of patients before treatment. Conclusions: The results indicate oxidative stress and DNA damage activity increase in MM and are alleviated in response to therapy.

Underlying mechanism of antioxidant action of Haejohwan in thyroxine-induced hyperthyroid rats (해조환(海藻丸)이 갑상선(甲狀腺) 기능항진증(機能亢進症)에서 항산화(抗酸化) 효과(效果)에 미치는 영향(影響))

  • Park, Jong-Hyuck;Yoon, Cheol-Ho;Seo, Un-Kyo;Kang, Jeong-Jun;Seo, Jong-Eun;Shin, Uk-Seob;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.399-407
    • /
    • 2000
  • This study was carried out to examine if Haejohwan (HJ) inhibits oxidant-induced lipid peroxidation and therby produces protective effect against thyroxine-induced hyperthyroid rats. Triiodothyronine $(T_3)$, thyroxine $(T_4)$, lipid peroxidation, xathine oxidase activities and type conversion ratio were increased in thyroxine treated group. However, they were decreased in HJ extract's pre-applied group. Glutathione level, activities of glutathione peroxidase, glutathione Stransferase and glutathione reductase were decreased in thyroxine treated group. But, they were increased in HJ extract's pre-applied group. These results suggest that in thyroxine-induced hyperthyroid rats HJhas an increase in the activities of oxygen free radical scavenging enzymes and inhibition of xanthine oxidase activities, and prevents lipid peroxidation.

  • PDF

Effects of Vitamin E Supplementation on Antioxidative Enzyme Activities in Liver KK Mice (비타민 E 보강식이가 KK마우스에서 간조직의 항산화계 효소 활성도에 미치는 영향)

  • 김해리;안현숙;서소영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.149-156
    • /
    • 1998
  • The purpose of this study was to investigate the effects of vitamin E supplementation on the activities of antioxidative enzymes in liver of KK mice of various ages and various duration of diabetes. Diabetes was induced by feeding high fat diet containing 20% corn oil(wt/wt). Weaned KK mice were fed high fat diet containing 51 IU or 2080 IU vitamin E per kg diet. Animals were sacrificed at 4, 6, and 9 months of age. In nondiabetic group, we found the decrease of antionxidative enzyme activities with aging. In diabetic group, antioxidative enzyme activities were decreased, and the change of hepatic vitamin E was related to glutathione peroxidase activity (r=0.71, p<0.001). Treatment with vitamin E did not modify the level of fasting blood glucose. However, it was observered that glutathione reductase and glutathione peroxidase activities as well as hepatic glutathione levels were increased by vitamie E supplementation, whereas catalase activity did not changed. The present result suggest that high vitamin E supplementation protects against lipid peroxidative damage in diabetic KK mice.

  • PDF