• Title/Summary/Keyword: Glutathione Sulfhydryl

Search Result 30, Processing Time 0.027 seconds

Long-term Supplementation of Epimedium koreanum Nakai in Rats and Its Effects on In Vivo Antioxidant Status with Age

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.404-408
    • /
    • 2007
  • In this study, we investigated the effects by age of long-tenn supplementation of Epimedium koreanum Nakai (EKN)-containing water on the in vivo antioxidant capacities of rats. All rats were reared in a conventional system, and none of the rats showed any signs of aversion to the EKN solution. Neither the mean nor maximum life spans of the rats were extended by long-tenn administration of the solution. The EKN extract caused decreases in the levels of serum thiobarbituric acid reactive substances in the rats. The activities of superoxide dismutase, catalase, and glutathione (GSH) peroxidase within the liver cytosol decreased with age in both the control and EKN-supplemented groups. GSH peroxidase activity, however, was higher at old age in the EKN-supplemented group. The activities of GSH reductase and GSH-S-transferase, and the levels of free-sulfhydryl (SH) and total-SH group gradually decreased with age in both groups. However, there was some tendency for higher levels in the EKN supplemented group at a corresponding age. These results indicate that long-tenn supplementation of EKN water extracts alone does not exhibit discernible adverse effects in rats, and has some enhancing effects on the antioxidant capacities of the blood and liver, but it does not have life-prolonging effects.

Separate Expression and in vitro Activation of Recombinant Helicobacter pylori Urease Structural Subunits

  • Lee, Kwang-Kook;Son, Joo-Sun;Chang, Yung-Jin;Kim, Soo-Un;Kim, Kyung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.700-704
    • /
    • 1998
  • Each of the recombinant structural genes of Helicobacter pylori urease, ureA and ureB, was cloned and overexpressed as inclusion bodies. Solubilization and renaturation of the inclusion bodies were carried out, to accelerate the pairing of sulfhydryl groups and the incorporation of nickel ions, which would lead to the native structure with high enzyme activity. Rates of urea hydrolysis were monitored as an indication of in vitro activation of renatured ureases. The activation of the apoprotein using 1 mM nickel ion, 100 mM sodium bicarbonate and a 10:1 ratio of reducing power resulted in a weak urease activity (about 11% of the native urease activity encoded by pTZ 19R/ure-l). When a sparse matrix screen method originally discovered for the crystallization of proteins was used, the activity increased higher than that obtained using glutathione. The effect of polyethylene glycol (PEG) on the activity was noticeable, giving two-fold increase in the specific activity (about 11 U/mg of protein corresponding to 22% of the native urease activity encoded by pTZ19R/ure-1).

  • PDF

Covalent Interactions of Reactive Pentachlorophenol Metabolites with Cellular Macromolecules (Pentachlorophenol 대사물과 세포내 거대분자물의 반응에 관한 연구)

  • 정요찬;윤병수;이영순;조명행
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 1997
  • Pentachlorophenol(PCP) which ks widely used in wood preservation, pulp and paper mills, has led to a substantial envirortmental contamination. To get the reliable data for the effective health risk assessment with PCP, covalent binding potential of PCP to cellular macromolecules and glutathione(GSH) was investigated after intraperitoneal administration of $^{14}C-PCP$ to rats. PCP metabolites were able to bind covalently to serum albumin and hepatic protein in a dose- and time-dependent manner. Hepatic protein adducts of PCP metabolites were increased as a function of cytochrome P-450 activities, whereas, albumin adducts significantly decreased. Covalent binding of PCP metabolites with DNA or hemoglobin was not observed. GSH levels in liver tissue decreased over 12hrs, however, the level was recovered after 48hrs. Tetrachloro-1,4-benzoquinone (1,4-TCBQ), one of the most reactive PCP metabolites, conjugated with GSH very rapidly. Base on our results, we could conclude that PCP metabolized to reactive electrophilic metabolites by cytochrome P-450 isoenzymes and conjugated rapidly with neighboring protein or nonprotein sulfhydryl before reacting with DNA or hemoglobin. We propose that albumin adducts and mercapturic acids of PCP metabolites can be used good biomarker of recent PCP exposure.

  • PDF

Effect of Cigarette Smoke Exposure on MPTP-Induced Neurotoxicity in Mice (흡연이 MPTP에 의해 유발되는 신경독성에 미치는 영향)

  • Heung-Bin Lim;Hyung-Ok Sohn;Young-Gu Lee;Dong-Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Effect of cigarette smoke exposure on 1-methyl-4-phpnyl-1,2,3,6-tetrahydro-pyidine (Mm)-induced neurotoxicity was investigated in C57BL6 mice. Cigarette smoke exposure of mice to the mainstream smoke generated from 15 cigarettes for 10 mins per day, 5 days per week, for fi weeks, effectively attenuated the decline both in the level of striatal dopamine and the number of brrosine hydros:ylase-positive ceils in the brain caused by MPTP treahent. Exposure to cigarette smoke significantly decreased monoamine oxidate B activity in the cerebral cortex and cerebellum. The activity of brain antioxidant enzymes such as catalase, glutathione peroxidase, and Cu, Zn-superoxide dismutase, was not changed by cigarette smoke exposure or MPTP treatment. Sulfhydryl compounds content in all brain regions except for the striatum was uniquely increased by MPTP treatment, however, such an effect of MPTP was not observed in mice exposed to cigarette smoke. These results suggest that cigarette smoke exposure inhibits MPTP-induced neurotoxicity without influencing free radical metabolism in the brain of mice. This protective effect of cigarette smoke seems to be closely related with the decreased activity of brain monoamine oxidase H. Key words : cigarette smoke exposure, dopamine, monoamine oxidase B, antioxidant enzywles, MPTP.

  • PDF

The Effect of Cobrotoxin on $NF-{\kappa}B$ binding Activity in Raw264.7 cells

  • Yoo, Jae-Ryong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • Cobrotoxin, a venom of Vipera lebetina turanica, is a group of basic peptidescomposed of 233 amino acids with six disulfide bonds formed by twelve cysteins. NF-kB is activated by subsequent release of inhibitory IkB and translocation of p50. Since sulfhydryl group is present in kinase domain of p50 subunit of NF-kB, cobrotoxin could modify NF-kB activity by protein-protein interaction. We therefore examined effect of cobrotoxin on NF-kB activities in lipopolysaccharide (LPS) and sodium nitroprusside (SNP)-stimulated Raw 264.7 mouse macrophages. Cobrotoxin suppressed the LPS and SNP-induced release of IkB and p50 translocation resulted in inhibition of DNA binding activity of NF-kB. Inhibition of NF-kB resulted in reduction of the LPS and SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of cobrotoxin on the NF-kB activity were blocked by addition of reducing agents dithiothreitol and glutathione. These results demonstrate that cobrotoxin inhibits activation of NF-kB, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-kB signal pathway.

  • PDF

Effect of Reduced Glutathione on Non-Protein Sulfhydryl and Non-Protein Disulfide of the Mouse Liver in Vitro (Reduced Glutathione의 In Vitro 첨가(添加)가 마우스간조직(肝組織)의 내재(內在) NP-SH 및 NP-SS에 미치는 영향(影響))

  • Oh, Sang-You
    • The Korean Journal of Physiology
    • /
    • v.7 no.2
    • /
    • pp.9-16
    • /
    • 1973
  • In view of the recent knowledge on the radioprotective action of reduced glutathione (GSH), the present study was designed the elucidate the effect of some concentrations of GSH on the levels of intrinsic non-protein sulfhydryl (NP-SH) and non-protein disulfide (NP-SS) of the mouse liver incubated at 4, 25 and 37C in vitro, respectively. The liver slice of the mouse was incubated at 4, 25 and 37C in the medium composed of 100 ml of Krebs-Ringer phosphate buffer (KRP) with the addition of 10, 20 and 30 mg of GSH, respectively. Measurement of NP-SH and NP-SS was made at 5, 30 and 60 min during the course of the incubation, and the results were compared with the controls which were incubated only in KRP medium, and the normal. The results thus obtained are summarized as follows: 1. When the mouse liver slice was incubated at 4C, the values of both NP-SH and NP-SS of the control and the group where 10 mg of GSH was added to the incubation medium were similar to those of the normal group, and the increase of NP-SH and NP-SS with the increased concentrations of GSH was not prominent. 2. When the liver slice was incubated in the concentrations of GSH 20 mg/100 ml KRP and GSH 30 mg/100 ml KRP at 25 C, the rate of increase of both NP-SH and NP-SS was proportional to the increase of GSH concentration. In the group where 10 mg of GSH was added to the incubation medium, the value of NP-SH and NP-SS reached the highest value at 30 min, but a tendency of decrease was observed at 60 min. 3. The rate of increase of NP-SH and NP-SS of the liver was most marked of all the group. studied when the incubation temperatuse was elevated to 37C, and the increase was proportional to the concentration of GSH and the incubation time.

  • PDF

A Study on the Protective Effects of Glutathione on Cytotoxicity of Mercury and Cadmium (수은 및 카드뮴의 세포독성에 대한 Glutathione의 역할에 관한 연구)

  • Jeong, Jae-Ho;Kim, Jun-Youn;Koh, Dai-Ha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 1999
  • Objectives: To evaluate the protective effects of glutathione (GSH) on the cytotoxicity of mercurial compounds$(CM_3HgCl,\;HgCl_2)$ or cadmium chloride$(CdCl_2)$ in EMT-6 cells. Methods: The compounds investigated were $CH_3HgCl,\;HgCl_2,\;CdCl_2$, GSH, buthionine Sulfoximine(BSO), L-2-oxothiazolidine-4-carboxylic acid(OTC). Cytotoxicity analysis consist of nitric oxide(NO) production, ATP production and cell viability. Results: Mercurial compounds and cadmium chloride significantly decreased cell viability and the synthesis of NO and cellular ATP in EMT-6 cells. GSH was not toxic at concentrations of 0-1.6 mM. In the presence of GSH, mercurial compounds and cadmium did not decrease the production of ATP and nitrite in EMT-6 cells. The protective effects of GSH against the cytotoxicity of mercurial compounds and cadmium depended on the concentration of added GSH to the culture medium for EMT-6 cells. We evaluated the effects of intracellular GSH level on mercury- or cadmium-induced cytotoxicity by the pretreatment experiments. Pretreatment of GSH was not changed ${NO_2}^-$ and ATP production, and pretreatment of BSO was decreased in dose and time-dependent manner. Pretreatment of OTC was increased ${NO_2}^-$ and ATP production in dose- and tine-dependent manner. Because intracellular GSH level was increased by OTC pretreatment, the protective effect on mercury- and cadmium-induced cytotoxicity was increased. Conclusions: These results indicated that sulfhydryl compounds had the protective effects against mercury-induced cytotoxicity by the intracellular GSH levels.

  • PDF

Assembly of Magnetic Nano-Fe3O4@GSH-Au NCs Core-Shell Microspheres for the Visualization of Latent Fingerprints

  • Huang, Rui;Tang, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850128.1-1850128.10
    • /
    • 2018
  • Glutathione (GSH), the protective agent and reducing agent, has been widely used to prepare gold nanoclusters (GSH-Au NCs) with stable fluorescence properties and negative charge of the surface. Meanwhile, polyethyleneimine (PEI) was used as the modification agent to synthesize magnetic ferroferric oxide nanoparticles ($Fe_3O_4$) with fantastic dispersibility and positive charge of the surface. Based on the electrostatic adsorption force, magnetic nano-$Fe_3O_4@GSH-Au$ NCs core-shell microspheres composed of magnetic $Fe_3O_4$ nanoparticles modified by PEI as the core and GSH-Au NCs as the shell were assembled. The prepared $Fe_3O_4@GSH-Au$ NCs microspheres harbored a uniform size (88.6 nm), high magnetization (29.2 emu/g) and excellent fluorescence. Due to the coordination bond action between Au atom and sulfhydryl (-SH), amino ($-NH_2$), carboxyl (-COOH) in sweat, $Fe_3O_4@GSH-Au$ NCs could combine with latent fingerprints. In addition, $Fe_3O_4@GSH-Au$ NCs with good fluorescence and magnetism could detect fingerprints on various objects. Significantly, the powders were not easy to suspend in the air, which avoided the damage to the health of forensic experts and the fingerprints by only powder contacting. Above all, $Fe_3O_4@GSH-Au$ NCs was successfully applied to the latent fingerprint visualization, which has great potential in forensic science.

Characterization of Antioxident Enzymes in the Lung of Rat Exposed to Cigarette Smoke (흡연한 흰쥐 폐조직 항산화효소들의 특성)

  • 이영구;손형옥;임흥빈;이동욱;박준영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.3-14
    • /
    • 1993
  • Oxidants in environment or cigarette smoke are known to be implicated in the oxidative damages of pulmonary system. Such cellular damages are prevented by the presence of adequate levels of antioxidants in the tissue. In the present study, we investigated the influences of smoking duration and concentration of smoke on lung antioxidant defense in rats. Subchronic exposure of rats to smoke generated from 6 cigarettes per day for 90 days caused the activities of catalase and superoxide dismutase (SOD) to increase. However, glutathione peroxidase (GP-Xase) was not significantly changed. Total sulfhydryl compounds (Total-SH) in the lung homogenates from the rats inhaled with cigarette smoke for 15 days was decreased by 44% , thereafter it was returned to the level of normal rats. On the contrary, when rats were daily exposed to a different concentration of smoke generated from 1 to 20 cigarettes per day for 15 days, the activity of catalase was increased gradually with dose, but total SOD activity was increased only in the rats of low dose groups less than 5 cigarettes. Three types of SOD (one Cu, Zn-SOD with pI 4.9, and two Zn-SOD with pI 4.7 and 7.9)were detected in the lung homogenates and Zn-SOD with pI 4.7 was the major and cigarette-smoke inducible form. These results indicate that the protection of lung against oxidants from cigarette smoke seems to be accomplished by the induction of catalase and SOD, especially a cyanide resistant Zn-SOD with pI 4.f, following the consumption of antioxidants such as GSH in the beginning of inhalation period.

  • PDF

Comparative liver drug metabolizing enzymes activities between Korean native cattle and swine (한우와 돼지에서 간의 약물 대사효소의 활성 비교)

  • Lee, Gwan-bok;Yun, Hyo-in;Park, Seung-chun;Kim, Min-kyu;Lee, Rae-kyung;Cho, Joon-hyung;Lee, Dong-woo
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.17-28
    • /
    • 1998
  • Drug-metabolizing activities of Korean native cattle and swine were investigated from viewpoints of the cytochrome P-450's level, their dependent mixed function oxidase activities, the reactive oxygen species formation and cytosolic enzyme acitivities from each liver homogenates. Level of cytochrome P-450 in the liver microsome of Korean native cattle was $0.28{\pm}0.05nmole/mg$ and that in pigs $0.35{\pm}0.03nmole/mg$. Level of cytochrome $b_5$ of Korean native cattle was $0.24{\pm}0.06nmole/mg$, and that of pigs $0.2{\pm}0.05nmole/mg$, showing no difference between two species. NADPH P-450 reductase were higher in Korean native cattle ($58.3{\pm}5.3nmole/mg/min$) than in pigs ($29.9{\pm}3.8nmole/mg/min$)(p<0.01). The activities of cytochrome P-450 dependent monooxygenases such as ethoxyresorufin O-deethylase (cattle, $96.5{\pm}12.5nmole/mg/min$ ; pigs, $13.6{\pm}2.1nmole/mg/min$), N-benzphetamine N-demethylase (cattle, $5.23{\pm}0.82nmole/mg/min$ ; pigs, $0.76{\pm}0.3nmole/mg/min$) and aniline hydroxylase (cattle, $0.95{\pm}0.1nmole/mg/min$ ; pigs, $0.33{\pm}0.08nmole/mg/min$) were much higher in Korean native cattle than in swine(p<0.01). However, the activity of testosterone $7{\alpha}$-hydroxylase was higher in swine ($90.4{\pm}1.2nmole/mg/min$) than cattle (cattle, $32.8{\pm}1.2nmole/mg/min$). Interestingly, testosterone $16{\alpha}$-hydroxylase, a marker enzyme for P-450 IIA was not detected in both animal species. These results suggest that Korean native cattle and pigs have high contents of P-450 IA1 and P-450 IIIA. Total sulfhydryl compound (cattle, $10.3{\pm}1.1nmole/mg$ ; Pigs, $14.5{\pm}1.8nmole/mg$) and glutathione related enzymes except glutathione reductase (cattle, $38.1{\pm}7.9nmole/mg/min$; swine, $22{\pm}3.6nmole/mg/min$) showed higher levels in swine than in Korean native cattle. Superoxide dismutase (cattle, $7.64{\pm}0.84nmole/mg/min$ ; pigs, $4.47{\pm}0.94nmole/mg/min$) and catalase (cattle, $30.4{\pm}3.7nmole/mg/min$ ; pigs, $17.2{\pm}1.8nmole/mg/min$) were remarkably higher in Korean native cattle than in swine (p<0.05).

  • PDF