• Title/Summary/Keyword: Glutathione (GSH)

Search Result 932, Processing Time 0.028 seconds

Alteration of hepatic anti-oxidant systems by 4-nonylphenol, a metabolite of alkylphenol polyethoxylate detergents, in Far Eastern catfish Silurus asotus

  • Park, Kwan Ha
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.6.1-6.7
    • /
    • 2015
  • Objectives This study aimed to estimate the effects of 4-nonylphenol (NP), a ubiquitously present surfactant in aquatic environments, on the anti-oxidant systems of the liver in the Far Eastern catfish Silurus asotus. Methods Changes in biochemical parameters involved in glutathione (GSH)-related and other anti-oxidant systems were analyzed following 4 weeks of 4-NP administration (0.1 and 1.0 mg/kg diet) via a formulated diet to catfish. Results 4-NP exposure induced an elevation in hepatic lipid peroxide levels and an accompanying decrease in reduced state GSH after 2 weeks, suggesting pro-oxidant effects of the chemical in catfish. This oxidative stress was associated with an inhibition of the GSH-utilizing enzyme glutathione peroxidase at the same time point. This inhibition was restored after 4 weeks. The activities of other anti-oxidant enzymes, i.e., glutathione reductase, superoxide dismutase and catalase were increased after 4 weeks. These enzyme increases occurred more strongly at the higher 4-NP concentration (1.0 mg/kg diet). Conclusions 4-NP given to catfish at 0.1 to 1.0 mg/kg diet, concentrations relevant to environmental levels, depletes the endogenous anti-oxidant molecule GSH and temporarily inhibits GSH-related anti-oxidant enzymes. Such declines in anti-oxidant capacity and elevated oxidative stress seem to be compensated eventually by subsequent activation of various anti-oxidant enzyme systems.

Charge Transfer Dye Probe for Thiol-containing Amino Acid (황원자를 함유한 아미노산 검출용 전하이동형 색소에 관한 연구)

  • Shin, In Sub;Gwon, Seon Yeong;Matsumoto, Shinya;Kim, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.261-269
    • /
    • 2015
  • Two new D-${\pi}$-A dyes were synthesized by the condensation reaction between active methyl and aromatic aldehyde and its biothiol sensing properties in DMSO/water were investigated by UV-vis spectroscopy. Upon addition of $Hg^{2+}$, the solution of D-${\pi}$-A dyes showed color change and the absorption band shows a formation of a dye-$Hg^{2+}$ coordination complex. These dyes exhibited high selectivity for $Hg^{2+}$ as compared with other cations. The dye-$Hg^{2+}$ could be recovered by adding glutathion(GSH). The absorption intensity of dye-$Hg^{2+}$ increased only by the addition of glutathione(GSH). The competition experiments revealed that no obvious interference was observed by performing the titration with the mixture of glutathione(GSH) and other amino acids. The results indicated that these D-${\pi}$-A dyes were highly selective for glutathione(GSH) detection.

Occurrence of Glutathione Sulphydryl (GSH) and Antioxidant Activities in Probiotic Lactobacillus spp.

  • Yoon, Yung H.;Byun, Jung R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1582-1585
    • /
    • 2004
  • The antioxidative ability on the basis of reduced glutathione sulphydryl level, the inhibition activities of linoleic acid peroxidation of cell free extract of Lactobacillus spp. and the effects of types of media and growth phase of the cells on the cellular GSH level have been determined. Correlation between reduced glutathione sulphydryl level and antioxidative ability of Lactobacillus spp. was analyzed: Lactobacillus casei HY 2782 contained 25.15 $\mu$mole/g of GSH, the cellular GSH level of L. casei HY 2782 reached maximum after 24 h of cultivation and tended to decrease on further cultivation up to 72 h. There was a significantly higher level of cellular GSH when grown in de Man Rogosa and Sharpe (MRS) broth than in tryptone phytone yeast extract (TPY) broth or bromcresol pruple dextrose (BCP) broth (p<0.05). The antioxidant activity of cell free extract of Lactobacillus spp. have been shown to be significantly different among strains in the inhibition of linoleic acid peroxidation by thiobarbituric acid (TBA) test (p<0.01). L. casei HY 2782 and L. acidophilus ATCC 4356 revealed a high degree of antioxidative effect in linoleic acid oxidation system. Spearmans' rank correlation coefficient between inhibitory activity on linoleic acid peroxidation and cellular GSH levels of Lactobacillus spp. was 0.65, which means a significant positive correlation.

A Study of in vitro Scavenging Reactions of Acrylamide with Glutathione Using Electrospray Ionization Tandem Mass Spectrometry

  • Cui, Sheng-Yun;Kim, Seung-Jin;Jo, Sung-Chan;Lee, Yong-Moon;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1235-1240
    • /
    • 2005
  • A combination of electrospray ionization and tandem mass spectrometry was used to characterize the scavenging reactions of acrylamide (AA) in the presence of glutathione (GSH) in vitro. In the presence of GSH, AA was deactivated effectively and scavenged by reactions consuming small amount of GSH. Reaction products and structural information were identified using collision-induced dissociation (CID) in an ion trap mass spectrometer. In the mixture of GSH and AA, significant increase in abundance of fragment ion peak was observed at m/z 233, which was identified as $[Cys-Glu]^+$, formed by the elimination of glycine moiety of GSH. GSH also contributes to the AA scavenging reaction by conjugating with AA through the sulfhydryl group in cysteine moiety. The probable scavenging reaction pathway of AA in the presence of GSH has been proposed based on the CID experimental data.

Functional Studies of Cysteine Residues in Human Glutathione S-Transferase P1-1 by Site-Directed Mutagenesis

  • Park, Hui Jung;Lee, Gwang Su;Gong, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • To gain further insight into the relationship between structure and function of glutathione S-transferase (GST), the four cysteine mutants, C14S, C47S, C101S and C169S, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized glutathione (GSH). The catalytic activities of the four mutant enzymes were characterized with five different substrates as well as by their binding to four different inhibitors. Cys14 seems to participate in the catalytic reaction of GST by stabilizing the conformation of the active-site loop, not in the GSH binding directly. The substitution of Cys47 with serine significantly reduces the affinity of GSH binding, although it does not prevent GSH binding. On the other hand, the substitution of Cys101 with serine appears to change the binding affinity of electrophilic substrate by inducing a conformational change of the $\alpha-helix$ D. Cys169 seems to be important for maintaining the stable conformation of the enzyme. In addition, all four cysteine residues are not needed for the steroid isomerase activity of human glutathione S-transferase P1-1.

Effect of N-Acetylcysteine on the Supetoxide Release, Chemotaxis from the Neutrophils and Glutathione Level of Plasma and Neutrophils (N-Acetylcysteine이 호중구의 Superoxide, Chemotaxis 및 혈장과 호중구의 Glutathione에 미치는 영향)

  • Song, Jeong-Sup;Lee, Sook-Young;Moon, Hwa-Sik;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.475-483
    • /
    • 1994
  • Background: N-acetylcysteine(ACE) is used both orally and intravenously in a variety of experimental pathologies resembling human disease states which exhibit endothelial toxicity as a result of oxidative stress, including acute pulmonary oxygen toxicity, septicemia and endotoxin shock. Despite these observations in vivo, it is not certain how this thiol drug produces its protective effects. ACE is a cysteine derivative which is able to direct1y react with oxygen radicals and may also act as a cysteine and glutathione(GSH) precursor following deacetylation. In this paper, we tried to know whether the therapeutic doses of ACE can modify the inflammatory function of the neutrophils and can increase the glutathione level of plasma in chronic obstructive pulmonary disease(COPD) patients. In addition, the effect of ACE to the purified neutrophil in terms of superoxide release and glutathione synthesis were observed. Method: Firstly, we gave 600mg of ACE for seven days and compare the release of superoxide, luminol-enhanced chemiluminescence from the neutrophils, neutrophil chemotaxis, and plasma GSH levels before and after ACE treatment in COPD patients. Secondly, we observed the dose dependent effect of ACE to the purified neutrophil's superoxide release and GSH levels in vitro. Results: 1) Usual oral therapeutic doses(600mg per day) of ACE for seven days did affect neither on the neutrophil's superoxide release, chemiluminescence, chemotaxis, nor on the plasma GSH concentration in the COPD patients. 2) ACE decreases the purified neutrophil's superoxide release and increase the GSH production in dose dependent fashion in vitro. Conclusion: Despite the fact that oral ACE treatment did not affect on the neutrophil's inflammatory function and plasma GSH concentration in COPD patients in usual therapeutic doses, it decreases the superoxide release and increases the GSH production from the isolated neutrophils in high molar concentrations. These findings suggest that to obtain an antioxidative effects of ACE, it might be needed to increase the daily dosage of ACE or therapeutic duration or change the route of adminisration in COPD patients.

  • PDF

Prognostic Significance of Altered Blood and Tissue Glutathione Levels in Head and Neck Squamous Cell Carcinoma Cases

  • Khan, Sami Ullah;Mahjabeen, Ishrat;Malik, Faraz Arshad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7603-7609
    • /
    • 2014
  • Glutathione is a thiol compound that plays an important role in the antioxidant defense system of the cell and its deficiency leads to an increased susceptibility to oxidative stress and, thus, progression of many disease states including head and neck cancer. In the present study, alterations of glutathione levels were investigated in study cohort of 500 samples (cohort 1 containing 200 head and neck cancer blood samples along with 200 healthy controls and cohort II with 50 head and neck squamous cell carcinoma tissue samples along with 50 control tissues) by high performance liquid chromatography. The results indicated that mean blood glutathione levels were significantly reduced in head and neck cancer patients (p<0.001) compared to respective controls. In contrast, the levels of glutathione total (p<0.05) and glutathione reduced (p<0.05) were significantly elevated in head and neck squamous cell carcinoma tissues compared to the adjacent cancer-free control tissues. In addition to this, pearson correlation performed to correlate different tissue glutathione levels (GSH) with clinical/pathological parameters demonstrated a significant negative correlation between pT-stage and GSH level ($r=-0.263^{**}$; p<0.01), C-stage and GSH level ($r=-0.335^{**}$; p<0.01), grade and GSH ($r=-0.329^{**}$; p<0.01) and grade versus redox index ($r=-0.213^{**}$; p<0.01) in HNSCC tissues. Our study suggests that dysregulation of glutathione levels in head and neck cancer has the potential to predict metastasis, and may serve as a prognostic marker.

CRYSTALLIZAT10N OF $\gamma$-GLUTAMYLCYSTEINE SYNTHETASE FROM Escherichia coli (대장균주로부터 분리한 GSH-1 효소의 결정화)

  • 황광언;김경규
    • Korean Journal of Crystallography
    • /
    • v.4 no.2
    • /
    • pp.100-104
    • /
    • 1993
  • Reduced glutathione (GSH) plays a vital role in the metabolism of all cells. Glutathions, a tripeptide cowfosed of glutamic acid, cysteane, and gtycina is synthesized by two synthesized reutions. The first is catalyzed by Y-glutamylcysteine synthetase (GSH-I) and the second by glutathione synthetase (GSH-ll). The glutathione biosynthetic pathway of E. coziis mainly controlled by nonallosteric feedback inhibition of GHS-I by GSH. Determination of the three-dimensional structure of GSH-I by X-ray crystallography is necessary in order to understand the structure-function relationship at the molecular level. As the (irst step toward its structure determination, crystallization of 5. coli V-glutamylcystfine synthetase (GSH-I) has been achived using the hanging drop vapor diffusion method and capillaw method. Crystals of GSH-I have been grown from ammonium sulfate solution. The crystals grew at room temperature within 10 days to dimensions of 0.2 m x 0.2 m x 0.2 ml by hanging drop vapor diffusion method and diffracted to about 4 A resolution using synchrotron X-rays. Another crystal, grown by the capillary method to dimensions of 0.25 mm x 0.25 mm x 0.3 mm within 40 days, diffracted to about 4 A resolution using X-rays from a rotating anode.

  • PDF

Effects of Red Ginseng Component Administration on Glutathione and Lipid Peroxidation Levels in Mice Liver (홍삼 활성 성분이 생쥐 간 조직에서 Glutathione 및 지질과산화에 미치는 항산화 효과)

  • Sung, Kum-Soo;Chun, Chul;Kwon, Yong-Hun;Chang, Che-Chul
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.176-182
    • /
    • 2000
  • The effects of red ginseng component (water extracts, alcohol extracts, lipophilic extracts, total saponins, panaxadiol and panaxatriol) administration on glutathione (GSH) and lipid peroxidation levels in mice were investigated. 20~25 g ICR mice which were pretreated with water extracts (50 mg/kg), alcohol extracts (50 mg/kg), lipophilic extracts (50 mg/kg), total saponins (50 mg/kg), panaxadiol (50 mg/kg) and panaxatriol (50 mg/kg) for 15 days. The ability of red ginseng component to protect against oxidative damage to the mouse liver was examined by determining the level of lipid peroxidation (MDA), glutathione, and the activities of glutathione peroxidase (GPX). The GSH level was raised by all the ginseng component, but the GSSG level was lowered ]argely by all the ginseng component. The ratio of GSSG/total GSH was decreased because the level of GSSG was decreased more than that of GSH. Finally, the lipid peroxidation (MDA) level was the lowest in lipophilic extracts and panaxadiol nest. In conclusion, the order of effectiveness of anti-oxidants was to be lipophilic extracts>panaxadiol>total saponins.

  • PDF

Antioxidative Effect of Ethanol Extract on Arctium lappa root in Streptozotocin Induced Diabetic Rats (우엉 뿌리 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐의 항산화에 미치는 영향)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.435-440
    • /
    • 2016
  • This study was carried to investigate the antioxidative effect of ethanol extract of Arctium lappa(Al) root in Streptozotocin(STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose of 45mg/kg.body wight(b.w) dissolved in citrate buffer. The ethanol extract of Al root was orally administrated once a day for 7 days at a dose of 1,000mg/kg.b.w. The contents of malondialdehyde(MDA) and activities of catalase (CAT), glutathione peroxidase(GSH-Px) were significantly decreased(p<0.05) in Al treated group compared to the those of STZ-control group. The content of glutathione(GSH) and activity of glutathione-s-transferase(GST) was significantly increased(p<0.05). These results indicated that ethanol extract of Al root would have antioxidative effect in STZ-induced diabetic rats.