• Title/Summary/Keyword: Glutamic acid decarboxylase (GAD)

Search Result 28, Processing Time 0.035 seconds

Evaluation of reference value of anti-Glutamic acid decarboxylase antibody for cerebrospinal fluid (뇌척수액에서 항 Glutamic acid decarboxylase 항체검사의 참고치 설정)

  • Park, Min-Ho;Shin, Sun-Young;Youn, Tae-Seok;Shin, Hi-Jung;Noh, Gyeong-Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.28-30
    • /
    • 2017
  • Purpose Anti-Glutamic acid decarboxylase antibody test (GAD Ab) has been used as a predictor of type 1 diabetes. GAD Ab has also been shown to be highly potent in cerebrospinal fluid (CSF) of patients with suspected diabetic peripheral neuropathy. Recently, it has been known that clinical significance of GAD Ab using CSF is useful for the neurological disorders. However, the reference value of anti-GAD Ab has been provided only for serum. In this experiment, we estimated the reference value of anti-GAD antibody for CSF in neurological patients. Materials and Methods A total of 211 neurological patients were enrolled. Serum and CSF were analyzed by radioimmunoassay (RIA) using commercial RIA anti-GAD Ab kit (RSR, London, United Kingdom). Normal saline was used as the normal CSF control because CSF is most similar to 0.9% normal saline. Results The mean value of normal CSF control was 1.97 U/mL, and two standard deviations (2SD) was 1.44 U/mL. Based on this data, the expected reference range of CSF could be estimated from 0.54 U/mL to 3.40 U/mL Conclusion The reference range of normal CSF control using normal saline obtained with Hoffmann's method. However, there will be a need to validate the CSF reference values using human normal CSF.

  • PDF

Stimulation of γ-Aminobutyric Acid Synthesis Activity in Brown Rice by a Chitosan/Glutamic Acid Germination Solution and Calcium/Calmodulin

  • Oh, Suk-Heung
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.319-325
    • /
    • 2003
  • Changes in the concentrations of $\gamma$-aminobutyric acid (GABA), soluble calcium ions, glutamic acid, and the activity of glutamate decarboxylase (GAD) were investigated in non-germinated vs. germinated brown rice. Brown rice was germinated for 72 h by applying each of the following solutions: (1) distilled water, (2) 5 mM lactic acid, (3) 50 ppm chitosan in 5 mM lactic acid, (4) 5 mM glutamic acid, and (5) 50 ppm chitosan in 5 mM glutamic acid. GABA concentrations were enhanced in all of the germinated brown rice when compared to the non-germinated brown rice. The GABA concentration was highest in the chitosan/glutamic acid that germinated brown rice at 2,011 nmol/g fresh weight, which was 13 times higher than the GABA concentration in the non-germinated brown rice at 154 nmol/g fresh weight. The concentrations of glutamic acid were significantly decreased in all of the germinated rice, regardless of the germination solution. Soluble calcium and GAD were higher in the germinated brown rice with the chitosan/glutamic acid solution when compared to the rice that was germinated in the other solutions. GAD that was partially purified from germinated brown rice was stimulated about 3.6-fold by the addition of calmodulin in the presence of calcium. These data show that the germination of brown rice in a chitosan/glutamic acid solution can significantly increase GABA synthesis activity and the concentration of GABA.

Ethanol Extract of Polygalae Radix Augments Pentobarbital-Induced Sleeping Behaviors through $GABA_Aergic$ Systems

  • Lee, Chung-Il;Lee, Mi Kyeong;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • Polygalae radix (PR) has traditionally been used as a sedative and anti-stress agent in oriental countries for a long time. PR which contains many ingredients is especially rich in saponins. This study was performed to investigate whether ethanol extract of PR enhances pentobarbital-induced sleep behaviors. In addition, possible mechanisms also were investigated. PR inhibited locomotor activity in mice. PR increased sleep rate and sleep time by concomitant administration with sub-hypnotic dose of pentobarbital (28 mg/kg). PR prolonged total sleeping time, and shortened sleep latency induced by pentobarbital (42 mg/kg). In addition, PR increased intracellular chloride concentration in primary cultured neuronal cells. The expression level of glutamic acid decarboxylase (GAD) were increased, and ${\gamma}$-aminobutyric acid $(GABA)_A$ receptors subunits were modulated by PR, especially increasing ${\gamma}$-subunit expression. In conclusion, PR augments penobarbital-induced sleep behaviors through activation of $GABA_A$ receptors and chloride channel complex.

Inhibitory Effects of the Korean Red Ginseng Extract on the Content of Neurotransmitter-Related Components of the Mouse Brain in Convulsion-induced Model

  • Choi, Jong-Won;Yoo, Yeong-Min;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.384-389
    • /
    • 2007
  • Treatment of mice with Korean Red Ginseng (KRG) changed glutamic acid and GABA content in the mouse brain tissue with pentylenetetrazole (PTZ)-induced convulsion. KRG were orally administered at a dose of 50, 100 mg/kg for two weeks. The electroconvulsions (MES) and PTZ-induced convulsion were reduced but those induced by strychnine, bicuculine and picrotoxin were not. PTZ-induced convulsion decreased the $\~{a}$-aminobutyric acid (GABA) content in brain compared to control group while the content was increased in KRG-treated group compared to PTZ group. In the PTZ-treated group, the GABA-transaminase (GABA-T) activity was increased by 59.6%, while no effect was observed on glutamate decarboxylase (GAD) activity. These results support that the KRG decreased the GABA contents and modulated the glutamic acid contents in the brain.

Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp.

  • Jang, Mihyun;Jeong, Do-Won;Heo, Ganghun;Kong, Haram;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.447-455
    • /
    • 2021
  • Strains of four Bacillus spp. were respectively inoculated into sterilized soybeans and the free amino acid profiles of the resulting cultures were analyzed to discern their metabolic traits. After 30 days of culture, B. licheniformis showed the highest production of serine, threonine, and glutamic acid; B. subtilis exhibited the highest production of alanine, asparagine, glycine, leucine, proline, tryptophan, and lysine. B. velezensis increased the γ-aminobutyric acid (GABA) concentration to >200% of that in the control samples. B. sonorensis produced a somewhat similar amino acid profile with B. licheniformis. Comparative genomic analysis of the four Bacillus strains and the genetic profiles of the produced free amino acids revealed that genes involved in glutamate and arginine metabolism were not common to the four strains. The genes gadA/B (encoding a glutamate decarboxylase), rocE (amino acid permease), and puuD (γ-glutamyl-γ-aminobutyrate hydrolase) determined GABA production, and their presence was species-specific. Taken together, B. licheniformis and B. velezensis were respectively shown to have high potential to increase concentrations of glutamic acid and GABA, while B. subtilis has the ability to increase essential amino acid concentrations in fermented soybean foods.

Bioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by Lactobacillus brevis Bmb5

  • Jeong, Anna;Yong, Cheng Chung;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1745-1748
    • /
    • 2019
  • Gamma-aminobutyric acid (GABA) plays important roles in host physiology. However, the effects of GABA are greatly restricted due to its low bioavailability in the human body. Here, a high acid-tolerance GABA-producing strain, Lactobacillus brevis Bmb5, was isolated from kimchi. Bmb5 converted glutamate to GABA (7.23 ± 0.68 ㎍/μl) at a rate of 72.3%. The expression of gadB gene, encoding the enzyme involved in the decarboxylation of glutamate to GABA, was decreased upon incubation. Our findings indicate GABA production in Bmb5 is not directly correlated with gadB gene expression, providing new insight into the mechanisms underlying GABA production in Lactobacillus.

Production of GABA (gamma amino butyric acid) by Lactic Acid Bacteria

  • Kook, Moo-Chang;Cho, Seok-Cheol
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.377-389
    • /
    • 2013
  • Gamma-amino butyric acid (GABA) is a kind of pharmacological and biological component and its application is wide and useful in Korea specially, becoming aging society in the near feature. GABA is request special dose for the purposed biological effect but the production of concentrated GABA is very difficult due to low concentration of glutamic acid existed in the fermentation broth. To increase GABA concentrate using fermentation technology, high content of glutamic acid is required. For this reason, various strains which have the glutamic acid decarboxylase (GAD) and can convert glutamic acid to GABA, were isolated from various fermented foods. Most of GABA producing strains are lactic acid bacteria isolated from kimchi, especially added monosodium glutamate (MSG) as a taste enhancer. Optimizing the formulation of culture media and the culture condition, GABA conversion yield and amounts were increased. Finally GABA concentration of fermentation broth in batch or fed batch fermentation reached 660 mM or 1000 mM, respectively. Furthermore formulation of culture media for GABA production developed commercially. Many studies about GABA-rich product have been continued, so GABA-rich kimchi, cheese, yogurt, black raspberry juice and tomato juices has been also developed. In Korea many biological effects of GABA are evaluated recently and GABA will be expected to be used in multipurpose.

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim;Wonseok Chang;SangYep Shin;Anjana Silwal Adhikari;Geun Hee Seol;Dae-Yong Song;Sun Seek Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.113-125
    • /
    • 2023
  • It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.