• 제목/요약/키워드: Glucose-6-phosphatase, PPAR-${\gamma}$

검색결과 2건 처리시간 0.018초

Comparisons between White Ginseng Radix and Rootlet for Antidiabetic Activity and Mechanism in KKAy Mice

  • Chung, Sung-Hyun;Choi, Chang-Geun;Park, Se-Ho
    • Archives of Pharmacal Research
    • /
    • 제24권3호
    • /
    • pp.214-218
    • /
    • 2001
  • The mechanisms responsible for the antidiabetic activity of both the white ginseng radix (Ginseng Radix Alba, GRA) and the rootlet (Cinseng Radix Palva, GRP) were investigated. After a four week oral administration, the fasting blood glucose levels in the GRA- and GRP-treated groups were lower when compared to the control group. To elucidate the hypoglycemic mechanism(s) of the ginseng radices, glucose absorption from the small intestine, hepatic hexokinase and glucose-6-phosphatase activities, in addition to PPAR-${\gamma}$ expression in adipose tissue were examined. The results strongly suggest that GRA can improve hyperglycemia in KKAy mice, possibly by blocking intestinal glucose absorption and inhibiting hepatic glucose-6-phosphatase, and GRP through the upregulation of adipocytic PPAR-$\gamma$ protein expression as well as inhibiting intestinal glucose absorption.

  • PDF

Telmisartan increases hepatic glucose production via protein kinase C ζ-dependent insulin receptor substrate-1 phosphorylation in HepG2 cells and mouse liver

  • Cho, Kae Won;Cho, Du-Hyong
    • Journal of Yeungnam Medical Science
    • /
    • 제36권1호
    • /
    • pp.26-35
    • /
    • 2019
  • Background: Dysregulation of hepatic glucose production (HGP) contributes to the development of type 2 diabetes mellitus. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), has various ancillary effects in addition to common blood pressure-lowering effects. The effects and mechanism of telmisartan on HGP have not been fully elucidated and, therefore, we investigated these phenomena in hyperglycemic HepG2 cells and high-fat diet (HFD)-fed mice. Methods: Glucose production and glucose uptake were measured in HepG2 cells. Expression levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase ${\alpha}$ ($G6Pase-{\alpha}$), and phosphorylation levels of insulin receptor substrate-1 (IRS-1) and protein kinase C ${\zeta}$ ($PKC{\zeta}$) were assessed by western blot analysis. Animal studies were performed using HFD-fed mice. Results: Telmisartan dose-dependently increased HGP, and PEPCK expression was minimally increased at a $40{\mu}M$ concentration without a change in $G6Pase-{\alpha}$ expression. In contrast, telmisartan increased phosphorylation of IRS-1 at Ser302 ($p-IRS-1-Ser^{302}$) and decreased $p-IRS-1-Tyr^{632}$ dose-dependently. Telmisartan dose-dependently increased $p-PKC{\zeta}-Thr^{410}$ which is known to reduce insulin action by inducing IRS-1 serine phosphorylation. Ectopic expression of dominant-negative $PKC{\zeta}$ significantly attenuated telmisartan-induced HGP and $p-IRS-1-Ser^{302}$ and -inhibited $p-IRS-1-Tyr^{632}$. Among ARBs, including losartan and fimasartan, only telmisartan changed IRS-1 phosphorylation and pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) antagonist, did not alter this effect. Finally, in the livers from HFD-fed mice, telmisartan increased $p-IRS-1-Ser^{302}$ and decreased $p-IRS-1-Tyr^{632}$, which was accompanied by an increase in $p-PKC{\zeta}-Thr^{410}$. Conclusion: These results suggest that telmisartan increases HGP by inducing $p-PKC{\zeta}-Thr^{410}$ that increases $p-IRS-1-Ser^{302}$ and decreases $p-IRS-1-Tyr^{632}$ in a $PPAR{\gamma}$-independent manner