• Title/Summary/Keyword: Glucose sensors

Search Result 65, Processing Time 0.02 seconds

Design of 1.0V O2 and H2O2 based Potentiostat (전원전압 1.0V 산소 및 과산화수소 기반의 정전압분극장치 설계)

  • Kim, Jea-Duck;XIAOLEI, ZHONG;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a unified potentiostat which can measure the current of both $O_2$-based and $H_2O_2$-based blood glucose sensors with low supply voltage of 1.0V has been designed and verified by simulations and measurements. Potentiostat is composed of low-voltage operational transconductance amplifier, cascode current mirrors and mode-selection circuits. It can measure currents of blood glucose chemical reactions occurred by $O_2$ or $H_2O_2$. The body of PMOS input differentional stage of the operational transconductance amplifier is forward-biased to reduce the threshold voltage for low supply voltage operation. Also, cascode current mirror is used to reduce current measurement error generated by channel length modulation effects. The proposed low-voltage potentiostat is designed and simulated using Cadence SPECTRE and fabricated in Magnachip 0.18um CMOS technology with chip size of $110{\mu}m{\times}60{\mu}m$. The measurement results show that consumption current is maximum $46{\mu}A$ at supply voltage of 1.0V. Using the persian potassium($K_3Fe(CN)_6$) equivalent to glucose, the operation of the fabricated potentiostat was confirmed.

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

Characterization of Nanopores on Micropillars Pt Electrodes for Non-Enzymatic Electrochemical Sensor Applications

  • Park, Dae-Joon;Lee, Yi-Jae;Park, Jae-Yeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2007
  • In this paper, mesoporous Pt on micro pillars Pt electrode is newly designed, fabricated, and characterized on silicon substrate for non-enzymatic electrochemical sensor micro-chip integrated with CMOS readout circuitry. The fabricated micro/nano Pt electrode has cylindrical hexangular arrayed nano Pt pores with a diameter of 3.2 nm which is formed on top of the micro pillars Pt electrode with approximately $6{\mu}m$ in diameter, $6{\mu}m$ in space, and $50{\mu}m$ in height. The measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $9.9nA/mm^2,\;6.72{\mu}A/mm^2,\;and\;7.67{\mu}A/mm^2$ in 10mM glucose solution with 0.1M phosphate buffered saline (PBS) solution, respectively. In addition, the measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $0.15{\mu}A/mm^2,\;0.56{\mu}A/mm^2,\;and\;0.74{\mu}A/mm^2$ in 0.1mM ascorbic acid (AA) solution with 0.1M phosphate buffered saline (PBS) solution, respectively. This experimental results show that the proposed micro/nano Pt electrode is highly sensitive and promising for CMOS integrated non-enzymatic electrochemical sensor applications. Since the micro-pillar Pt electrode can also be utilized with a micro-fluidic mixer in the sensor chip, the sensor chip can be much smaller, cheaper, and easier to be fabricated.

Non-Invasive HbA1c Measurement Using Two-Wavelength Raman Scattering (2 파장 라만 산란을 이용한 비침습적 HbA1c 측정)

  • Yang, Jooran;Kim, Hyungpyo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.305-310
    • /
    • 2019
  • The purpose of this study is to classify the concentration of HbA1c (glycosylated hemoglobin), which is an indicator in the management of accurate blood glucose level in diabetic patients, using a non-invasive optical property measurement method. To measure the optical properties of HbA1c, the optical source uses LEDs and laser diodes of 400 nm in the visible region and 1450 nm in the nearinfrared region using thermopile to detect the Raman scattering intensity. An HbA1c control solution was used. As a result, the optical properties of 5% (normal) and 9% (abnormal) HbA1c control solutions showed specificity in which the output values were reversed at 850 nm and 950 nm, respectively. This property was applied to distinguish between normal and abnormal values in diabetes. In addition, considering tissue penetration depths for non-invasive measurements, two wavelengths were determined to be effective in distinguishing the concentrations of HbA1c control solutions at 5%, 7%, and 9%.

Development of a Hydrogen Peroxide Sensor Based on Palladium and Copper Electroplated Laser Induced Graphene Electrode (PdCu를 전기 도금한 레이저 유도 그래핀 전극 기반의 과산화수소 측정 센서 개발)

  • Park, Daehan;Han, Ji-Hoon;Kim, Taeheon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1626-1632
    • /
    • 2018
  • In this paper, we describe the fabrication and characterization of a hydrogen peroxide ($H_2O_2$) sensor based on palladium and copper (PdCu) electroplated laser induced graphene (LIG) electrodes. $CO_2$ laser was used to form LIG electrodes on a PI film. This fabrication method allows simple control of the LIG electrode size and shape. The PdCu was electrochemically deposited on the LIG electrodes to improve the electrocatalytic reaction with $H_2O_2$. The electrochemical performance of this sensor was evaluated in terms of selectivity, sensitivity, and linearity. The physical characterization of this sensor was conducted using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), which confirmed that PdCu was formed on the laser induced graphene electrode. In order to increase the sensor sensitivity, the Pd:Cu ratio of the electroplated PdCu was varied to five different values and the condition of highest amperometric current at an identical of $H_2O_2$ concentration was chosen among them. The resulting amperometric current was highest when the ratio of Pd:Cu was 7:3 and this Pd;Cu ratio was employed in the sensor fabrication. The fabricated PdCu/LIG electrode based $H_2O_2$ sensor exhibited a sensitivity of $139.4{\mu}A/mM{\cdot}cm^2$, a broad linear range between 0 mM and 16 mM of $H_2O_2$ concentrations at applied potential of -0.15 V, and high reproducibility (RSD = 2.6%). The selectivity of the fabricated sensors was also evaluated by applying ascorbic acid, glucose, and lactose separately onto the sensor in order to see if the sensor ourput is affected by one of them and the sensor output was not affected. In conclusion, the proposed PdCu/LIG electrode based $H_2O_2$ sensor seems to be suitable $H_2O_2$ sensor in various applications.