• Title/Summary/Keyword: Glucose sensors

Search Result 65, Processing Time 0.028 seconds

The Improvement of Sensing Performance of ISFET Glucose and Sucrose Sensors by Using Platinum Electrode and Photo-crosslinkable Polymers (백금전극과 감광성 고분자를 이용한 ISFET 포도당 및 자당센서의 감지성능 개선)

  • Cho, Byung-Woog;Jang, Won-Duk;Kim, Chang-Soo;Park, Lee-Soon;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.23-28
    • /
    • 1995
  • The ISFET glucose and sucrose sensors containing platinum electrode and photopolymeric enzyme membrane were fabricated. The platinum working electrode was used for the electrolysis of hydrogen peroxide, which was the other product of the enzyme reaction, to improve sensing characteristics of the sensors. In order to improve response time, photo-crosslinkable polymer(PVA-SbQ) was used to the matrix for the enzyme immobilized membrane. The characteristics of glucose and sucrose sensors were investigated according to the variation of platinum electrode area. The response time was about $3{\sim}5$ minutes and determinations of glucose and sucrose in the range of about $30{\sim}300mg/dl$ could be possible.

  • PDF

A Unified Potentiostat for Electrochemical Glucose Sensors

  • Sohn, Ki-Sung;Oh, Seok-Jae;Kim, Eui-Jin;Gim, Jeong-Min;Kim, Nam-Soo;Kim, Yeong-Seuk;Kim, Jong-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.273-277
    • /
    • 2013
  • A unified potentiostat circuit for both $O_2$- and $H_2O_2$- based electrochemical glucose sensors was proposed and its function was verified by circuit simulations and measurement results of a fabricated chip. This circuit consisted of an operational amplifier, a comparator and current mirrors. The proposed circuit was fabricated with a $0.13{\mu}m$ thick oxide CMOS process and an active area of $360{\mu}m{\times}100{\mu}m$. The measurements revealed an input operation range from 0.5 V to 1.6 V in the $H_2O_2$- based bio-sensor and from 1.7 V to 2.6 V in the $O_2$- based bio-sensor with a supply voltage of 3.3 V. The evaluation results showed that the proposed potentiostat circuit is suitable for measuring the electrochemical cell currents of both $O_2$- and $H_2O_2$- based glucose sensors.

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

Electropolymerized Thin Bilayers of Poly-5-amino-1-naphthol and Poly-1,3-phenylendiamine for Continuous Monitoring Glucose Sensors

  • Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.291-294
    • /
    • 2003
  • A highly interferent-resistive membrane, poly-5-amino-1-naphthol (poly-5A1N), underlied beneath enzymeembedded poly-1,3-phenylendiamine (poly-m-PD) network for miniturized continuous monitoring glucose sensors. The enzyme layer was prepared from a mixed solution of glucose oxidase (GOx) and m-PD monomer by simple electrolysis. The mass change of poly-5A1N was monitored by electrochemical quartz crystal microbalance (EQCM) in situ and the corresponding thickness was measured. Successive electropolymerization of poly-5A1N and poly-m-PD create a several tens nm-thick bilayer showing excellent selectivity for $H_2O_2$ and low activity loss of immobilized enzymes.

ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane

  • Chung, Mi-Kyung;Kim, Seong-Wan;Lee, Sang-Sik;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • This paper describes the development of a glucose biosensor based on ion sensitive field effect transistor(ISFET) with a palladium(Pd) modified ion sensing membrane. By adopting Pd as a hydrogen sensitive layer and integrating a screen-printed reference electrode, the sensitivity and stability were considerably improved due to the high permeability and selectivity of the Pd hydrogen selective membrane. This paper suggests a new approach for realizing portable and highly sensitive glucose sensors for diagnosing and treating diabetes mellitus.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

Photolithographic Formation of GOD Immobilized Membranes for ISFET Glucose Sensors (ISFET 포도당센서를 위한 GOD 고정화막의 사진식각 형성법)

  • 김창수;최성문;서화일;김의락;손병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.58-63
    • /
    • 1992
  • Photolithography techniques were applied for immobilization of GOD membrane on the pH-ISFET with photo-sensitive polymers to realize ISEFT glucose sensor. This IC technology-compatible glucose sensor showed good sensing characteristics in the wide range of 10-1000 mg/dl glucose concentrations.

  • PDF

Development of Eco-friendly Paper Glucose Sensor Using Printing Technology (인쇄 기술을 이용한 친환경 종이 혈당 센서 스트립 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.116-120
    • /
    • 2020
  • In this paper, we developed an electrochemical glucose sensor strip using a paper substrate. The paper glucose sensor strip is eco-friendly because it uses paper as a substrate, and it has the advantage that it can be manufactured only with four printing, drying and cutting processes. The paper glucose sensor is significantly simplified by the production process than the conventional glucose sensors because the production of only four printing on the paper substrate. In this paper, eco-friendly tracing paper was used to develop a paper glucose sensor strip, and screen-printing technology was used to form a carbon/silver electrode, insulating layer and glucose oxidase(GOD) layer. The developed paper glucose sensor strip has a flat structure with a size of 30 × 4.6 ㎟, and blood injection is a type of direct contact with the exposed enzyme layer above the strip. In this paper, the performance of paper glucose sensor strips was evaluated by analyzing the cyclic voltammetry(CV) and chronoamperometry(CA) characteristics.

Development of Single-layer Glucose Sensor Using GDH-FAD (Glucose Dehydrogenase Flavin Adenine Dinucleotide)

  • Kye, Ji-Won;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.156-159
    • /
    • 2018
  • We developed a glucose sensor using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD). The structure of the three-layer glucose sensor was simplified, in which a single-layer design was used to lower the unit cost, and GDH-FAD was used to increase the measurement reliability. GDH-FAD has less impact on the 20 interfering substances that affect blood glucose measurement, such as galactose and maltose compared to glucose oxidase (GOD), and is not affected by the oxygen saturation; therefore, it is possible to measure both arterial or venous blood and thus less susceptibility to hematocrit. In this study, we developed a single-layer glucose sensor strip with low hematocrit effect using the GDH-FAD enzyme, and measured and evaluated the performance.