• Title/Summary/Keyword: Glucose concentration

Search Result 2,326, Processing Time 0.026 seconds

The Preparation of Polyacrylonitrile Diagnostic Membranes for Blood Glucose Measurements (2) : Effects of Blood Constituents on the Measurements of Glucose Concentration (혈당측정을 위한 폴리아크릴로니트릴 진단막의 제조(2) : 혈액속의 성분들이 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky;Choi, Mi-Ok
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.268-273
    • /
    • 2008
  • Diagnostics membranes which were made of polyacrylonitrile were prepared for the measurements of blood glucose concentration. Final absorbances at 680nm through polyacrylonitrile diagnostic membranes were measured at various concentration of glucose in blood. It was found that the end-point results of varing absorbance values as time (K/S) had a linear relationship toward the blood glucose concentration. The effects of possible constituents in human blood on the glucose concentration measurements were examined. As a result, most of the chemicals did not affect seriously on the blood glucose measurements.

Preparation of Polyphosphazene Diagnostic Membranes for Blood Glucose Measurements (혈당측정을 위한 폴리포스파젠 진단막의 제조)

  • Kwon, Suk-Ky
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • A new type of diagnostic membranes based on methoxyethoxy and trifluoroethoxy co-substituted polyphosphazene has been prepared to measure blood glucose level of diabetics. Final absorbances at 680 nm through activated polyphosphazene membranes were measured at various concentration of glucose in plasma or blood. The end-point results of varing absorbance values as time (K/S) was found to have a linear relationship toward the blood glucose concentration. The effects of substitution rates with hydrophilic groups and hydrophobic groups on the measurements of glucose concentration were studied. Dose-response slope (DRS) values between glucose concentration and K/S values increased as the hydrophilic substitution rates increased. However, in more than 30% of the substitution rates, it was difficult to measure exact concentration level of glucose because DRS increased rapidly.

Candida tropicalis에 의한 Xylose 와 Glucose로부터 Xylitol 생산

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.495-500
    • /
    • 1997
  • Xylitol production from xylose and glucose was investigated using Candida tropicalis KFCC-10960. As glucose concentration in xylose medium was increased, ethanol production increased. However, xylitol production was maximum at glucose concentration of 10 g/l. The concentrated cells grown on xylose or glucose were inoculated in xylose medium. The specific activities of xylose reductase and xylitol dehydrogenase, and xylitol production in concentrated cells grown on glucose were the same as those in concentrated cells grown on xylose. The results suggested that cells grown on glucose had the same xylitol producing activity as those grown on xylose. By feeding glucose in xylose medium, cell growth was achieved from glucose and xylitol production was obtained from xylose. By using this technique, a final xylitol concentration of 261 g/l was achieved from 300 g/l xylose in 41 hours which corresponded to a xylitol yield from xylose of 87% and a xylitol productivity of 6.37 g/1-h.

  • PDF

A study on the Polygonum tinctoria natural dyeing of by glucose reduction (포도당 환원에 의한 쪽 천연염색에 관한 연구)

  • Mikyoung Kim
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.2
    • /
    • pp.248-261
    • /
    • 2023
  • The conditions for minimizing dyes and additives when dyeing cellulose fibers such as linen, ramie, and hemp fabrics were obtained using glucose, an organic reducing agent. Dyeability and colorfastness were measured through repeated dyeing. The overall surface dyeing concentration followed the linen>hemp>ramie order, and most of the colors were in the range of PB (PurpleBlue). As the glucose concentration increased, the blue series was strengthened, and the color was dark and clear. It was determined that glucose the concentration of 4g/L was appropriate for minimizing the amount of dye. When the dyeing temperature was 30℃, the surface dyeing concentration was the highest, and the color was dark and clear. Although the dyeing concentration increased as NaOH concentration increased, 3g/L (pH 12.37) was considered appropriate for the minimum NaOH concentration, which becomes gradual after the dyeing concentration increased rapidly. It was found that the surface dyeing concentration, when repeated six times for 5 min, was better than that of dyeing once for 30 min. Washing, rubbing, and perspiration colorfastness were all found to be excellent in grades 4-4-5, and colorfastness to light was excellent in grades 5 of linen and hemp and grade 4 of ramie.

Effect of Dissolved Oxygen Concentration on the Metabolism of Glucose in Pseudomonas putida BM014

  • Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.109-111
    • /
    • 1998
  • The effect of dissolved oxygen concentration on the metabolism of glucose in Pseudomonas putida BM014 was investigated. Glucose was completely converted to 2-ketogluconate via extracellular oxidative pathway and then taken up for cell growth under the condition of sufficient dissolved oxygen concentration. On the other hand, oxygen limitation below dissolved oxygen tension (DOT) value of 20% of air saturation caused the shift of glucose metabolism from the extracellular oxidative pathway to the intracellular phosphorylative pathway. Specific activities of hexokinase and gluconate kinase in intracellular phosphorylation pathway decreased as the DOT increased, while 2-ketogluconokinase activity in extracellular oxidative pathway increased under the same condition. This result can be usefully applied to microbial transformation of glucose to 2-ketogluconate, the synthetic precursor for iso-vitamine C, with almost 100% yield via extracellular oxidation by simple DOT control.

  • PDF

Effects of Wisoo(B-21) and Baekwhe(GV-20) acupuncture on serum glucose concentration and lipid composition in high fat diet induced diabetic rat (위유(胃兪)(B-21), 백회(百會)(GV-20)혈(穴) 자침(刺鍼)이 고지방식이(高脂肪食餌)에 의한 당뇨병유발(糖尿病誘發) 흰쥐의 혈청(血淸)Glucose 농도(濃度) 및 지질구성(脂質構成)에 미치는 영향(影響))

  • Lee Sang-Hoon;Lee Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • Effects of Wisoo and Baekwhe acupuncture on serum glucose and lipid composition were investigated in high fat diet induced diabetic rat. Plasma glucose, free fatty acids and $\Beta-lipoprotein$ concentration showed a high reduction in wisoo acupuncture group compared to those of control group, however the values of baekwhe acupuncture group showed no significantly different those of control group. Plasma triglyceride and LDL-cholesterol concentration showed a tendency to decrease in the wisoo acupuncture groups, however the values of baekwhe showed no significantly different those of control group. Total cholesterol concentration showed a high reduction in wisoo acupuncture groups and HDL-cholesterol concentration showed a high values in wisoo acupuncture group, however these values no significantly different in all treatment groups.

  • PDF

Application of Radio Frequency Microwave Technique for Glucose Detection (포도당 검출을 위한 라디오 주파수 마이크로파의 적용)

  • Kim Tae-Woo;Park Byoung-Soo;Cho Dong-Uk;Han Khil-Sung;Cho Tae-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 2004
  • Radio frequency (RF) microwave can be used to predict glucose concentration in a sample. This paper presents preliminary results in determining the concentration by measuring relative permittivity in the solutions of distilled water, saline, human serum, and human blood containing glucose. It was shown that the microwave method has larger penetration depth of about 100times of NIR, than NIR technique in measuring glucose concentration for the tissue like a human muscle. The larger penetration depth of the method has advantages because it is more useful to detect glucose in a human body non-invasively. In the experiments, sensitivity for detecting glucose concentration in blood solutions was almost 57mg/dl at the frequency of approximately 5.8GHz.

  • PDF

Preparation of Polyurethane Diagnostic Membranes for Blood Glucose Measurements (6) : Effects of Hematocrit on Measurements of Glucose Concentration (혈당측정을 위한 폴리우레탄 진단막의 제조(6) : 헤마토크릿이 글루코우즈의 농도 측정에 미치는 영향)

  • Kwon, Suk-Ky
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2010
  • Polyurethane diagnostic membranes were prepared to measure blood glucose level of diagnostics. Final absorbances at 680 nm through activated polyurethane membranes were measured at various concentration of glucose in blood. The end-point results of varing absorbance values as time (K/S) was found to have a linear relationship toward the blood glucose concentration. The effects of hematocrit on the glucose concentration measurements were examined. In low hematocrit, dose-response slope (DRS) values between gluose concentration and K/S values did not show the big differences compared to those in plasma. However, in high hematocrit (more than 40%) DRS values were considerably decreased.

High Density Culture of KA112 Hybridoma and Effect of Glucose Concentration on MAb Productivity (하이브리도마의 고농도 배양과 포도당 농도가 MAb 생산성에 미치는 영향)

  • 박상재;최차용
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.478-482
    • /
    • 1993
  • Perfusion culture was conducted in Celligen perfusion culture system using a self-constructed hybridoma cell and low serum medium. The culture system employed hollow fiber to separate cells from the culture broth. Maximum cell density of $2.1\times10^7$ ce11s/m1, 10 times higher than in batch culture, could be achieved. Concentration of monoclonal antibody (MAb) was 4 times higher and production rate at maximum feed rate was 9 times higher than in batch culture. Glucose concentration was very important for the cell growth and MAb production. When glucose concentration was below 1g/l, i. e. 0.5~0.9g/l, specific MAb production rate decreased but cell concentration still increased. As the glucose concentration goes above 1g/l, specific MAb production rate increased and remained at maximum value at more than 1.5g glucose/l. The maximum value of the specific Mab production rate was similar to that of batch culture.

  • PDF

Electrochemical Determination of Glucose Concentration Contained in Salt Solution (소금용액에 포함된 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.475-479
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.

  • PDF