• Title/Summary/Keyword: Glucose addition

Search Result 1,569, Processing Time 0.026 seconds

Effects of White Pan Bread Added with Kamut (Triticum turgidum spp.) on High Fat Diet-Induced Obese C57BL/6 Mice (Kamut (Triticum turgidum spp.) 식빵 급여가 고지방식이 유도 비만 C57BL/6 마우스에 미치는 효과)

  • Jung, Hyun Gi;Baek, Ji Yun;Choi, Ye Jung;Kang, Ki Sung;Kim, Hyun Young;Kim, Ji Hyun;Choi, Jine Shang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2021
  • Objectives: The purpose of this study was to investigate the effect of white pan bread added with Kamut (Triticum turgidum spp.) on high fat diet (HFD)-induced obese C57BL/6 mice. Methods: The white pan bread or white pan bread with Kamut (BK) were administered for 8 weeks in HFD-induced obese C57BL/6 mice. To evaluate the effect and its mechanisms of BK on obese mice, we measured body weight change, serum lipid profiles, histopathological analysis, and protein expression of CCAAT/enhancer binding protein-α (C/EBPα) in the liver. Results: Administration of BK significantly decreased body weight in HFD-induced obese mice. In addition, BK-administered group significantly reduced serum total cholesterol, glucose, and high-density lipoprotein cholesterol levels compared with the HFD-induced control group. The HFD-induced mice had damaged liver tissue and increased the size of adipose tissue, but BK-administered group attenuated liver damage and decreased the size of adipocyte. Furthermore, administration of BK significantly down-regulated C/EBPα in the liver compared with HFD-fed mice. In particular, BK-administered group has higher inhibited body weight, serum lipid profiles, and C/EBPα expressions than white pan bread-administered group. Conclusions: This study demonstrated that administration of BK attenuated HFD-induced obesity by regulation of C/EBPα than consumption of white pan bread. Therefore, BK could be developed as a bread for prevention of obesity.

Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production

  • Lee, Kyoung-Dong;Sun, Hyeon-Jin;Lee, Mina;Chun, Jiyeon;Shin, Tai-Sun;Choi, Kap Seong;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.228-234
    • /
    • 2022
  • Helianthus tuberosus is perennial plant as Compositae family and is shown various physiological activities such as analgesic, antipyretic, anti-inflammatory, anti-fungal, anti-spasmodic, aperient, cholagogue, diuretic, spermatogenic, stomachic, and tonic effects. In this study, we investigated the antidiabetic and anti-inflammatory effects of pancake mixture powder (PM) supplemented with H. tuberosus (PMH) in rat skeletal muscle L6 cells and murine macrophage RAW 264.7 cells, respectively. PM and PMH inhibited in vitro α-glucosidase activity. Glucose consumption was increased by PM and PMH without cytotoxicity in rat myoblast L6 cells. Western blot analysis revealed that PM and PMH down-regulated glycogen synthase kinase (GSK)-3β activation in L6 cells. PM and PMH inhibited inflammatory mediator, nitric oxide (NO) production without cytotoxicity in LPS-induced RAW 264.7 cells. The anti-diabetic and anti-inflammatory effects of PMH was more stronger than those of PM. Anti-diabetic and anti-inflammatory effects of PMH would be due to functional characteristics of the supplemented H. tuberosus and the presence of garlic and onion used as ingredients of PM. Taken together, our results that addition of functional materials such as H. tuberosus in product has synergic effects and PMH is potential candidate for treatment of diabetes through inhibiting inflammation.

Comparison of the bovine blood gas parameters produced with three types of portable blood gas analyzers

  • Ro, Younghye;Choi, Woojae;Hong, Leegon;Kim, Eunkyung;Choe, Eunhui;Kim, Danil
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.60.1-60.6
    • /
    • 2022
  • Background: A definite diagnosis should be made in the bovine practice field, however, it was difficult to perform laboratory analysis immediately. Currently, three types of portable blood gas analyzers are available in Korea. Objectives: This study aimed to evaluate the correlations among these three analyzers. Methods: Seventy-two plasma samples from Holstein-Friesian cows were used for blood gas analysis, and three instruments (EDAN i15 Vet, VETSCAN i-STAT, and EPOC) were operated simultaneously. Moreover, plasma calcium levels were compared between these portable analyzers and blood chemistry device, which is usually used in a laboratory environment. Pearson analysis was performed to confirm the correlation of each parameter produced with the three instruments and blood chemistry analyzer. Results: As results, high correlation was observed in parameters of pH, pO2, potassium ion, ionized calcium, and glucose (p < 0.001, r > 0.7). In addition, pCO2 showed a moderate correlation among the three analyzers (p < 0.001, r > 0.5), and there was no correlation among all instruments for sodium ions. There was also a high correlation between ionized calcium from the three portable devices and total calcium from the biochemistry analyzer (p < 0.001, r > 0.9). Conclusions: In conclusion, there was a high correlation between results from the three different blood gas analyzers used in the bovine clinical field in Korea. Thus, a consistent diagnosis can be made even with different equipment if the operator is aware of the strengths and weaknesses of each piece of equipment and operates it properly.

Investigation of Forage Characteristics of Three Very Early-Maturing Italian Ryegrass (Lolium multiflorum Lam.)

  • Song, Yowook;Woo, Jae Hoon;Lee, Sang-Hoon;Choi, Bo Ram;Lim, Eun A;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.188-194
    • /
    • 2022
  • This study was conducted to investigate the forage characteristics of very early-maturing Italian ryegrass (IRG) three cultivars within September, 2021 to July, 2022 in Cheonan, Korea. We used three different cultivars of Italian ryegrass in this study "Greenfarm" "Greenfarm2ho" and "Greenfarm3ho" The results of heading date in this study, "Greenfarm" was recorded 3 days earlier than the other two cultivars, and its lodge tolerance score was the highest among the three. However, in case of plant length, there was no significantly difference in whole cultivars, in addition disease resistance, insect resistance and cold tolerance were not significantly different in three cultivars. The forage productivity of "Greenfarm2ho" was recorded the highest, especially the 1st harvesting of "Greenfarm2ho" yielded significantly the highest and superior to other varieties. As a result of feed value analysis, three cultivars were generally superior to overseas varieties and in particular, "Greenfarm2ho" was recorded to have excellent value because of the lowest NDF and ADF content. On the other hand, there was no significant difference in crude protein content among three varieties. In case of the monosaccharides content "Greenfarm3ho" had significantly higher glucose content than other two varieties, therefore the "Greenfarm" has advantage for preparing high quality of silage. In contrast, there was no significant difference among three varieties in fructose content.

Development of a High-Titer Culture Medium for the Production of Cholesterol by Engineered Saccharomyces cerevisiae and Its Fed-Batch Cultivation Strategy

  • Wang, Ling-Xu;Zheng, Gao-Fan;Xin, Xiu-Juan;An, Fa-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1178-1185
    • /
    • 2022
  • Steroids are a class of compounds with cyclopentane polyhydrophenanthrene as the parent nucleus, and they usually have unique biological and pharmacological activities. Most of the biosynthesis of steroids is completed by a series of enzymatic reactions starting from cholesterol. Synthetic biology can be used to synthesize cholesterol in engineered microorganisms, but the production of cholesterol is too low to further produce other high-value steroids from cholesterol as the raw material and precursor. In this work, combinational strategies were established to increase the production of cholesterol in engineered Saccharomyces cerevisiae RH6829. The basic medium for high cholesterol production was selected by screening 8 kinds of culture media. Single-factor optimization of the carbon and nitrogen sources of the culture medium, and the addition of calcium ions, zinc ions and citric acid, further increased the cholesterol production to 192.53 mg/l. In the 5-L bioreactor, through the establishment of strategies for glucose and citric acid feeding and dissolved oxygen regulation, the cholesterol production was further increased to 339.87 mg/l, which was 734% higher than that in the original medium. This is the highest titer of cholesterol produced by microorganisms currently reported. The fermentation program has also been conducted in a 50-L bioreactor to prove its stability and feasibility.

All-trans retinoic acid alters the expression of adipogenic genes during the differentiation of bovine intramuscular and subcutaneous adipocytes

  • Chung, Ki Yong;Kim, Jongkyoo;Johnson, Bradley J.
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1397-1410
    • /
    • 2021
  • The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein β (C/EBPβ), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPβ decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.

Neuroprotective effects of some herbal medicine plant extract against ischemia·reperfusion-induced cell death in SK-N-SH neuronal cells (허혈·재관류 유도성 신경세포사멸에 대하여 신경보호효과를 가지는 약용식물 추출물의 검색)

  • Oh, Tae-Woo;Lee, Mi Young;Lee, Hye Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water and 80% EtOH extract of some herbal medicine plant on ischemia reperfusion-induced cell death in SK-N-SH human brain neuronal cells. Methods : SK-N-SH cells were treated with 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, ptior to the addition of different concentrations of herbal medicine plant extract (0, 10, 25, 50, 100, 250, 500, 1000 ${\mu}g/ml$) for 2 hr and then reperfused with growth medium, incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. Results : Herbal medicine plant extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. Also increased the ratio of ADP/ATP in ischemia-induced neuronal cells. Conclusions : Our results suggest that herbal medicine plant extract has a neuroprotective property via increasing the energy levels in neuronal cells, suggesting that extract may has a therapeutic potential in the treatment of ischemic brain injury. The exact component and mechanism remains for the future study.

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon;Subramanian, Manivannan;Yeom, Eunbyul;Yu, Kweon
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.640-648
    • /
    • 2022
  • CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.

Enhanced DPPH Radical Scavenging Activity of Lactobacillus plantarum K-21 Isolated from Kimchi and its Various Antioxidant Effects (김치유래 Lactobacillus plantarum K-21의 DPPH 라디칼 제거활성 증진 및 다양한 항산화 효과)

  • Kim, Yerin;Kim, Yedam;Jeon, Chae-Min;Park, Gyulim;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.715-725
    • /
    • 2022
  • Lactic Acid Bacteria (LAB) are among the representative probiotics that have been used for a long time in fermented food. Although there are many studies on detecting the radical scavenging activity of LAB, few studies have been conducted on the environmental factors that improve scavenging activity. This study investigated the environmental factors affecting the DPPH radical scavenging and various antioxidant activities of Kimchi-derived Lactobacillus plantarum K-21 with antihypertensive and radical scavenging activities. The optimal conditions for scavenging DPPH radicals were glucose 2%, bactopeptone 0.5%, Tween 80 0.05%, L-cysteine 0.05%, and an initial pH 6.5 at 35℃. Under optimal conditions, the DPPH radical scavenging activity was 94.8±2.2%, which was 1.5 times higher than that of the basic medium. In addition, L. plantarum K-21 had other antioxidant activities; ABTS radical scavenging (93.6±1.5%), hydroxyl radical scavenging (8.5±0.9%), metal chelating (65.9±0.5%), NO scavenging (53.1±19%), SOD-like (25.1±1.5%), and reducing power (11.7±1.4%) activities were detected. Therefore, L. plantarum K-21 may act not only as a starter for lactic acid-fermented foods with improved functionality but also as a drug for various diseases caused by oxidative stress.