• Title/Summary/Keyword: Globe temperature

Search Result 119, Processing Time 0.021 seconds

Effect of Crust Increase on Natural Convection Heat Transfer in the Molten Metal Pool (용융 금속의 고화층 증가가 자연대류 열전달에 미치는 영향)

  • Park, Rae-Joon;Choi, Sang-Min;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.226-233
    • /
    • 1999
  • An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured 88 a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments. is the major influential parameter in the crust formation, duo to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a now correlation between the Nusslet number and Rayleigh number in the molten metal pool with the crust formation was developed as $Nu=0.0923(Ra)^{0.302}$ ($2{\times}10^4< Ra<2{\times}10^7$).

Development of Eggs and Early Life History of Acheilognathus macropterus (Acheilognathinae) from Japan (일본에 서식하는 큰납지리의 난발생과 초기생활사)

  • Kim, Chi-Hong;Ishinabe, Toshihiro;Kim, Min-Kyoung;Kim, Woo-Jin
    • Korean Journal of Ichthyology
    • /
    • v.24 no.2
    • /
    • pp.101-109
    • /
    • 2012
  • The egg development and early life history of Acheilognathus macropterus from Japan which is an exotic bitterling from China were observed under the controlled water temperature, $20.0{\pm}1.0^{\circ}C$. Fertilized eggs are opaque yellow in color and long elliptic globe shaped measuring $2.78{\pm}0.12mm$ in length and $1.44{\pm}0.04mm$ in breadth. The number of egg averaged 151 per an oviposition. The eggs of this species began to hatch about seventy eight hours after insemination and the mean of total length of larvae were 3.8 mm. S form moving of larvae were observed from three days after hatching. The larvae reached at the heterotrophic stage about twenty-five days after hatching. Morphological character and analysis of cytochrome DNA of this species from Japan were relatively similar to Korean but spawned egg shape was different remarkably. Taxonomical research is necessary in the future.

The First Finding of the Lichen Solorina saccata at an Algific Talus Slope in Korea

  • Park, Jung Shin;Kim, Dong-Kap;Kim, Chang Sun;Oh, Seunghwan;Kim, Kwang-Hyung;Oh, Soon-Ok
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.276-287
    • /
    • 2020
  • An algific talus slope is composed of broken rocks with vents connected to an ice cave, releasing cool air in summer and relatively warmer air in winter to maintain a more stable microclimate all year round. Such geological features create a very unusual and delicate ecosystem. Although there are around 25 major algific talus slopes in Korea, lichen ecology of these areas had not been investigated to date. In this study, we report the first exploration of lichen diversity and ecology at an algific talus slope, Jangyeol-ri, in Korea. A total of 37 specimens were collected over 2017-2018. Morphological and sequencing analysis revealed 27 species belonging to 18 genera present in the area. Of particular interest among these species was Solorina saccata, as it has previously not been reported in Korea and most members of genus Solorina are known to inhabit alpine regions of the Northern Hemisphere. We provide here a taxonomic key for S. saccata alongside molecular phylogenetic analyses and prediction of potential habitats in South Korea. Furthermore, regions in South Korea potentially suitable for Solorina spp. were predicted based on climatic features of known habitats around the globe. Our results showed that the suitable areas are mostly at high altitudes in mountainous areas where the annual temperature range does not exceed 26.6 ℃. Further survey of other environmental conditions determining the suitability of Solorina spp. should lead to a more precise prediction of suitable habitats and trace the origin of Solorina spp. in Korea.

A Study on Productivity of Forage Turnip ( Brassica rapa var. rapifera ) (사료용 순무의 생산성에 관한 연구)

  • 손용석;강병화;김순식
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • A series of experiments were carried out for two successive years to investigate the productivity of forage turnip in mid-northern area of Korea. Fresh matter and dry matter yields of 6 foreign cultivars (Purple Top Strap Leaved, Purple Top White Globed, Seven Top, Shogoin, White Egg and Amber Globe) seeded either in early spring or in autumn after harvesting forage corn were evaluated with different seeding date and harvesting date as well as with different level of fertilization. The results obtained are summarized as follows: 1. The earlier the seeding date in spring (Mar. 29, Apr. 12, Apr. 16) was, the higher was the yield of fresh matter and dry matter as the plant growth ceased after mid June, when the temperature began to rise. 2. In spite of its high DM yield, the Japanese cultivar, Shogoin, showed poor forage quality for summer feeding due to its earlier bolting in harvesting season. 3. Of the 6 cultivars Purple Top White Globed showed highest DM yield (800 kg/ 10a) in mid area including SEOUL irrespective of planting season. 4. Although the turnips showed mostly positive yield responses to fertization, the differences were not great especially above the level of$N-P_2O_5-K_2O$: 5-3-4 kg/lOa. 5. IN TAEGWALLYONG, a northern area of Korea, the average fresh matter yield of the six cultivars tested amounted to 3,500 kg/lOa when drilled on June 30 and harvested on Aug. 30, although bulb formation during the summer was relatively poor. 6. Concluded, forage turnip is regarded to be a suitable catch-crop which has the potential to maintain and increase the total forage production in mid-northern area of Korea. The intercropping is recommendable especially for autumn planting well past the time forage corn has been harvested.

  • PDF

Evaluation of Occupational Exposure to Noise and Heat stress in Coal-fired Power Plants (석탄화력발전소 작업자의 소음과 온열 스트레스에 대한 노출 평가)

  • Jiwoon Kwon;Kwang-Myong Jang;Sungho Kim;Se-Dong Kim;Miyeon Jang;Jiwon Ro;Seunghyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.464-470
    • /
    • 2023
  • Objectives: This study evaluated occupational exposures to noise and heat stress during routine non-outage works in three coal-fired power plants in the Republic of Korea. Methods: The data were collected during the summer of 2020. Full shift noise exposure of 52 workers were measured using noise dosimeters. Heat stress of 16 worksites were measured for 70 minutes using wet-bulb globe temperature monitors. Results: The noise dosimetry results revealed time-weighted averages that ranged from 47.5 to 88.9 dBA. 2 out of 52 noise measurements exceeded 85 dBA. Based on the arithmetic mean, the coal service group showed the highest level at 80.2 dBA by job tasks. Noise exposures exceeding 85 dBA were measured in the coal service and plant operator group. Heat stress index measurements ranged from 20.3℃ to 37.2℃. 1 out of 9 indices measured in coal facilities and 4 out of 7 indices measured in boiler house exceeded 1 hour TWA during moderate work. Heat stress indices measured from boiler houses were significantly higher than those measured from coal equipment. Conclusions: The results show that overexposure to noise and heat stress may be encountered during routine non-outage work activities in coal-fired power plants. Appropriate actions should be taken to reduce future health outcome from occupational exposure to noise and heat stress in the industry.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Distribution of Hydrometeors and Surface Emissivity Derived from Microwave Satellite Observations and Model Reanalyses (위성관측(MSU)과 모델 재분석 자료에서 조사된 대기물현상과 표면 방출율의 분포)

  • Kim, Tae-Yean;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.552-564
    • /
    • 2002
  • The data of satellite-observed Microwave Sounding Unit (MSU) channel 1 (Ch1) brightness temperature and General Circulation Model (GCM) reanalyses over the globe have been used to investigate low tropospheric hydrometeors and microwave surface emissivity during the period from January 1981 to December 1993. The average of GCM Ch1 temperature has been reconstructed from three kinds of reanalyses, based on the MSU weighting function. Since the GCM temperature mainly corresponds to the thermal state of the lower troposphere without the difference in the emissivity between ocean and land, it is higher in summer than in other seasons over the regions. The MSU temperature over the ocean shows its maximum at the ITCZ and the SPCZ due to hydrometeors. Over high latitude ocean, the temperature is enhanced because of sea ice emissivity, while it is reduced over the land. The seasonal displacement of the ITCZ and the SPCZ systematically appeared in the difference of Ch1 temperature between the GCM and the MSU. The difference values decrease in the regions of the ITCZ, the SPCZ, and the sea ice because of the increase of the MSU temperature. According to the local minima of the values, the ITCZ moves norhward to 9 N in fall, and the SPCZ moves southward to 12 S in boreal fall and winter. The sea ice in the northern hemisphere is extended southward to 53 N in winter, while the ice in the southern hemisphere, northward to 58 S in boreal summer. We also have discussed the separated contribution from hydrometeors and surface emissivity to the MSU Ch1 temperature, utilizing radiative transfer theory. The increase of 4-6K in the temperature over the ITCZ is inferred to result from hydrometeors of 1-1.5mm/day, and furthermore the increase of 10-30K over the high latitude ocean, ice emissivity of 0.6-0.9.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM (중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의)

  • Jun, Sang-Yoon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.87-103
    • /
    • 2019
  • This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.