• 제목/요약/키워드: Global speech absence probability

검색결과 7건 처리시간 0.02초

SVM의 확률 출력을 이용한 새로운 Global Soft Decision 기반의 음성 향상 기법 (Global Soft Decision Using Probabilistic Outputs of Support Vector Machine for Speech Enhancement)

  • 조규행;장준혁
    • 한국음향학회지
    • /
    • 제27권2호
    • /
    • pp.75-79
    • /
    • 2008
  • 본 논문에서는 support vector machine (SVM) 기반의 global soft decison (GSD)을 이용한 새로운 음성 향상 기법을 제시한다. 일반적으로 soft decision (SD) 이득 수정 및 잡음 전력 추정에 근거한 음성 향상 기법이 hard decision을 이용한 음성향상 기법 보다 우수한 성능을 보이는 것으로 알려져 있다. 특히, 각 프레임에서의 음성 부재에 대한 효과적인 척도인 전역음성 부재확률 (global speech absence probability, GSAP)을 SD 기반의 음성 향상 기법에 적용한 여러 연구가 진행되었다. 본 논문에서는 sigmoid 함수를 이용하여 얻어진 SVM의 확률 출력에 의해 추정된 새로운 GSAP를 음성 향상 기법에 적용한다. 제안된 알고리즘의 성능은 다양한 잡음 환경에 적용하여 PESQ 및 MOS 평가 방법을 바탕으로 기존의 GSD 기반의 스펙트럼 향상 기법과 비교하여 향상된 결과를 나타내었다.

잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출 (Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments)

  • 박윤식;이상민
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.97-103
    • /
    • 2012
  • 본 논문에서는 잡음환경에서 효과적인 음성을 검출하기 위한 새로운 음성 검출 (VAD, voice activity detection) 알고리즘을 제안한다. 통계적 모델에 기반의 Likelihood ratio (LR)를 통하여 도출되는 전역 음성부재확률 (GSAP, global speech absence probability)은 음성검출을 위한 피쳐 (feature) 파라미터로 널리 적용되고 있다. 하지만 신호 대 잡음 비 (SNR, signal-to-noise ratio)가 낮은 잡음환경에서는 정확한 GSAP 추정이 어려운 문제점을 가지고 있다. 따라서 제안된 방법에서는 잡음환경에서 강인한 VAD 알고리즘을 위하여 Teager energy (TE) 기반의 GSAP를 피쳐 파라미터로 적용한다. 제안된 알고리즘은 기존의 방법과 객관적인 실험을 통해 비교 평가한 결과 다양한 배경잡음 환경에서 향상된 성능을 보였다.

스펙트럼 변이 기반의 향상된 음성 존재 불확실성 추적 기법을 이용한 Global Soft Decision (Global Soft Decision Based on Improved Speech Presence Uncertainty Tracking Method Incorporating Spectral Gradient)

  • 김종웅;장준혁
    • 한국음향학회지
    • /
    • 제32권3호
    • /
    • pp.279-285
    • /
    • 2013
  • 본 논문에서는 기존의 global soft decision 기법에서 음성 부재 확률을 구할 때의 음성 부재와 존재에 대한 a priori 확률값의 비(q)에 스펙트럼 변이 기법을 적용한 음성 향상 기법을 제안한다. 기존의 global soft decision 방법은 음성 부재 확률을 구하기 위해 가정한 가설에 따라 고정된 q 값을 사용하였지만, 본 논문에서 제안한 알고리즘은 기존의 고정된 값에 직전 2 프레임에서의 음성 존재 여부와 스펙트럼 변이 값의 상태 조건에 따라 적응적으로 q 값이 가변되도록 하여 음성 부재 확률을 향상시키는 기법이다. 제안된 방법의 성능 평가를 위해 ITU-T P.862 PESQ(Perceptual Evaluation of Speech Quality)를 이용하여 평가하였고, 그 결과 제안된 스펙트럼 변이 기법을 적용한 방법이 기존의 global soft decision 방법보다 향상된 결과를 보여주었다.

음성향상을 위한 2차 조건 사후 최대 확률기법 기반 Global Soft Decision (Improved Global-Soft Decision Incorporating Second-Order Conditional MAP for Speech Enhancement)

  • 금종모;장준혁
    • 한국통신학회논문지
    • /
    • 제34권6C호
    • /
    • pp.588-592
    • /
    • 2009
  • 본 논문에서는 기존의 global soft decision 방법에서 음성부재확률의 고정 파라미터에 2차 조건 사후 최대 확률기법을 적용한 음성 향상 기법을 제안한다. 기존의 global soft decision 방법은 음성부재확률을 구하기 위해 가정한 가설에 따라 파라미터값을 고정하여 다양한 음성 환경 변화에 민감한 점을 고려하여 본 논문에서 제안한 알고리즘은 기존의 고정 파라미터 값에 직전 2 프레임에서의 음성 존재와 부재에 대한 조건을 부여해주어 음성과 음성사이의 상호 연관성을 고려해주고, 보다 유동적으로 현재 프레임의 음성부재확률을 추정하는 음성향상 기법이다. 제안된 방법의 성능평가를 위해 ITU-T P.862 perceptual evaluation of speech quality (PESQ)를 이용하여 평가하였고, 그 결과 제안된 2차 조건 사후 최대 확률기법을 적용한 global soft decision 방법은 기존의 Global soft decision 방법보다 향상된 결과를 나타내었다.

잡음환경에서 Teager 에너지와 음성부재확률 기반의 음성향상 알고리즘 (Speech Enhancement Algorithm Based on Teager Energy and Speech Absence Probability in Noisy Environments)

  • 박윤식;안홍섭;이상민
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.81-88
    • /
    • 2012
  • 본 논문에서는 다양한 잡음환경에서 효과적인 잡음 제거 (NS, noise suppression)를 위한 새로운 음성향상 (speech enhancement) 알고리즘을 제안한다. 제안된 방법에서는 음성향상 알고리즘에서 잡음전력 갱신을 위한 음성검출 (VAD, voice activity detection)의 피쳐 (feature) 파라미터로서 오염된 음성신호를 기반으로 주파수 밴드 별로 도출되는 기존의 지역 음성부재확률 (LSAP, local speech absecne probability) 대신 오염된 음성신호의 Teager energy (TE)를 적용한 LSAP를 적용한다. 또한 적용된 TE operator의 성능을 개선하기 위하여 프레임 단위로 도출되는 전역 음성부재확률 (GSAP, global SAP)을 TE의 가중치 파라미터로서 적용한다. 제안된 알고리즘은 기존의 방법과 객관적인 실험을 통해 비교 평가한 결과 다양한 배경잡음 환경에서 향상된 성능을 보였다.

가변 스텝 크기 적응 필터와 음성 검출기를 이용한 보청기용 피드백 제거 알고리즘 (A Variable Step-Size Adaptive Feedback Cancellation Algorithm based on GSAP in Digital Hearing Aids)

  • 안홍섭;박규석;송지현;이상민
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1744-1749
    • /
    • 2013
  • Acoustic feedback is perceived as whistling or howling, which is a major complaint of hearing-aids users. Acoustic feedback cancellation is important in hearing-aids because acoustic feedback degrades performance of the hearing aid device by reducing maximum insertion gain. Adaptive systems for estimate acoustic feedback path and feedback suppression algorithms have been proposed in order to solve this problem. A typical feedback cancellation algorithm is LMS(least mean squares) because of its computational efficiency. However it has problem of convergence performance in high correlated input signal. In this paper, we propose a new variable step-size normalized LMS(least mean squares) algorithm using VAD(voice activity detection) to overcome the limitation of the LMS algorithm. The VAD algorithm is GSAP(global speech absence probability) and the feedback cancellation algorithm is normalized LMS. The proposed algorithm applies different step-size between voice and non-voice using VAD, for high stability, fast convergence speed and low misalignment when correlated inputs, such as speech. The result of simulation with white noise mixed speech signal, the proposed algorithm shows high performance then traditional algorithm in terms of stability, convergence speed and misalignment.

전역 음성 부재 확률 기반의 향상된 최소값 제어 재귀평균기법을 이용한 음성 향상 기법 (Speech Enhancement Based on Improved Minima Controlled Recursive Averaging Incorporating GSAP)

  • 송지현;방동혁;이상민
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.104-111
    • /
    • 2012
  • 본 논문에서는 향상된 최소값 제어 재귀 평균 기법 (improved minima controlled recursive averaging, IMCRA) 알고리즘의 잡음 전력 추정성능을 향상 시키기 위한 알고리즘을 제안한다. 기존의 IMCRA은 주파수 특성이 빠르게 변화하는 비정상적인 환경과 낮은 SNR을 갖는 상황에서 잡음 전력 추정에 직접적으로 영향을 미치는 음성 검출기의 성능이 강인하지 못한 단점이 있다. 본 연구에서는 강인한 음성 검출 성능을 위해서 기존 IMCRA의 음성 검출기에 전역 음성 부재 확률을 적용한 음성 향상 기법을 제안한다. 제안된 알고리즘의 성능 평가는 음성의 perceptual evaluation of speech quality (PESQ)와 composite measure를 통한 음질을 평가하였다. 실험 결과 다양한 잡음 환경 (car, white, babble)에서 전역 음성 부재 확률을 적용한 IMCRA의 음성 향상 기법이 향상된 결과를 보여주었다. 특히, 비정상잡음 환경인 babble 5dB에서 PESQ 0.026, composite measure 0.029의 향상된 음질을 나타내었다.