• 제목/요약/키워드: Global positioning system/Global navigation satellite system

검색결과 315건 처리시간 0.031초

Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석 (Performance Assessment of GBAS Ephemeris Monitor for Wide Faults)

  • 송준솔
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Accuracy Analysis of Ionospheric Delay of Low Earth Orbit Satellites by using NeQuick G Model

  • Bak, Serim;Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.363-369
    • /
    • 2021
  • Since the Global Navigation Satellite System (GNSS) signal received from the low Earth orbit (LEO) satellite is only affected by the upper ionosphere, the magnitude of the ionospheric delay of Global Positioning System (GPS) signal received from ground user is different. Therefore, the ground-based two-dimensional ionospheric model cannot be applied to LEO satellites. The NeQuick model used in Galileo provides the ionospheric delay according to the user's altitude, so it can be used in the ionospheric model of the LEO satellites. However, the NeQuick model is not suitable for space receivers because of the high computational cost. A simplified NeQuick model with reduced computing time was recently presented. In this study, the computing time of the NeQuick model and the simplified NeQuick model was analyzed based on the GPS Klobuchar model. The NeQuick and simplified NeQuick model were applied to the GNSS data from GRACE-B, Swarm-C, and GOCE satellites to analyze the performance of the ionospheric correction and positioning. The difference in computing time between the NeQuick and simplified NeQuick model was up to 90%, but the difference in ionospheric accuracy was not as large as within 4.5%.

Network-RTK GPS 기반 자동차 정밀 위치 추정 (Network-RTK GNSS for Land Vehicle Navigation Application)

  • 운봉영;이동진;이상선
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.424-431
    • /
    • 2017
  • 요즘 차량 네비게이션 시스템은 큰 관심 분야이다. GNSS(Global Navigation Satellite System)은 실외 측위를 위한 기술 중 핵심적인 기술이다. 그러나 GNSS는 높은 정확도와 신뢰도를 제공하지 못한다. 이러한 이유로, 우리는 차량의 GNSS 성능의 정확도를 향상시키기 위하여 Network-RTK를 적용하였다. 이 Network-RTK 모드에서 GNSS 에러는 급격히 감소하게 된다. 본 논문에서 우리는 ntrip client 프로그램을 설명하고 다양한 환경에서의 실험 결과를 보여준다.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

GPS/Galileo 시스템의 기하구조 및 영향 분석 (Analysis for Influence and Geometry of GPS/Galileo System)

  • 이재원
    • 한국항해항만학회지
    • /
    • 제29권8호
    • /
    • pp.763-770
    • /
    • 2005
  • 위성을 이용한 측위 시스템인 광역위성항법시스템(GNSS : Global Navigation Satellite System)은 측량 및 항법 등에 정확한 위치, 속도 그리고 시간 정보를 제공함으로써 위치결정의 중요한 도구가 되어왔다. 미 국방성에 의해 개발되어 운용되고 있는 범세계적위치결정시스템인 GPS는 GNSS 시장에 독점적인 존재이므로, GNSS 사용자는 GPS에 의존할 수 밖에 없는 상황이다. 이런 독점 상황을 극복하기 위하여 러시아, 유럽 그리고 일본은 독자적인 위성항법시스템을 개발하기 시작하였다. 특히 유럽의 Galileo 시스템은 2008년 발사 목표로 진행되고 있다. 본 연구는 위성궤도를 생성하고 분석할 수 있도록 제작한 GIMS2005 프로그램을 이용하여 차세대 GNSS인 Galileo 시스템을 GPS와 비교 분석함에 있다. 본 실험은 GPS 단독 처리의 한계와 GPS/Galileo 결합 시스템의 이점을 인식할 수 있게 한다. 기하구조 분석은 가시위성수, 정밀도 저하율, 내부 신뢰도 그리고 외부 신뢰도를 GPS 단독 처리와 비교하여 분석된다.

Test Results of WADGPS System using Satellite-based Ionospheric Delay Model for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Song, Kiwon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.213-219
    • /
    • 2016
  • Most existing studies on the wide-area differential global positioning system (WADGPS) employed a grid ionosphere model for error correction in the ionospheric delay. The present study discusses the application of satellite-based ionospheric delay model that provides an error model as a plane function with regard to individual satellites in order to improve accuracy in the WADGPS. The satellite-based ionospheric delay model was developed by Stanford University in the USA. In the present study, the algorithm in the model is applied to the WADGPS system and experimental results using measurements in the Korean Peninsula are presented. Around 1 m horizontal accuracy was exhibited in the existing planar fit grid model but when the satellite-based model was applied, correction performance within 1 m was verified.

위성항법 기반 AGV의 안전성 향상 시험 (Safety Improvement Test of a GNSS-based AGV)

  • 강우용;이은성;한지애;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제14권5호
    • /
    • pp.648-654
    • /
    • 2010
  • 본 논문에서는 위성항법 기반의 위치 정보를 이용하여 주행하는 AGV(Autonomous Guided Vehicle)의 안전성을 향상시키기 위한 항법 시스템을 구성하고 성능 시험을 수행하였다. 이를 위해 위성항법 신호에 급격한 오차를 감지하고 위성항법 신호가 단절된 경우에도 연속적인 주행이 가능하도록 DR(Dead Reckoning) 항법 시스템을 구성하였다. 주행 시험 결과 0.15m이상의 위성항법 오차를 감지할 수 있었으며 8초의 위성항법 신호 단절에서 약 1.5m 이내의 오차로 안정적인 주행을 확인할 수 있었다.

옥내 외 위치정보측정시스템의 원리와 응용 (The principles and Applications of Outdoor & Indoor GPS(Global Positioning System))

  • 문행규
    • 기술사
    • /
    • 제41권5호
    • /
    • pp.55-58
    • /
    • 2008
  • GPS is the global Navigation Satellite System which is developed by the United States Department of Defense as an abbreviation of the Global Positioning System. The GPS uses a constellation of 24 Medium Earth Orbit satellites that transmit precise microwave signals, that enable GPS receivers to determine their location, speed, direction, and time. Following, the shooting down of Korean Air Lines Flight 007 in 1983. President Ronald Reagan issued a directive making the system available free for civilian use as a common good. Since then, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, and hobbies such as geocaching. GPS also provides a precise time reference used in many applications including scientific study of earthquakes, and synchronization of telecommunications networks.

  • PDF

도심환경에서의 밀결합 측위 기법 (Closely Coupled Positioning Technique in Urban Environments)

  • 황유민;오주영;김윤현;김진영;김하성;지규인
    • 한국위성정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.104-109
    • /
    • 2012
  • 최근 위치해를 얻기위해서 위성을 기반으로한 GPS(Global Positioning System) 가 많이 이용되고 있다. 그러나 도심지역 등에서는 다중경로에 의한 영향으로 신뢰성 낮은 위치 정보를 수신할 수도 있다. 이러한 문제점을 해결하기 위해 GPS신호와 QZSS(Quasi-Zenith Satellite System) 신호를 통합하는 밀결합 측위기법을 제안하고자 한다. 또한 AP(access point)정보를 이용함으로써 Wi-Fi 신호와 GNSS신호를 통합하는 밀결합 알고리즘을 제안하고자 한다. 본 연구과제는 도심지역에서 항법성능을 향상시키기 위해서 GPS/QZSS/Wi-Fi 통합항법 알고리즘을 개발하고, 이를 차량주행실험을 통하여 위치의 가용성과 정확도를 기준으로 성능분석을 수행하였다.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.