• 제목/요약/키워드: Global positioning system/Global navigation satellite system

검색결과 315건 처리시간 0.025초

Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

  • Lim, Cheolsoon;Lee, Yebin;Cha, Yunho;Park, Byungwoon;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.251-261
    • /
    • 2022
  • The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) - Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan's GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

A Preliminary Study of Korean Dual-Frequency SBAS

  • Yun, Ho;Han, Deokhwa;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권1호
    • /
    • pp.11-16
    • /
    • 2014
  • A Satellite Based Augmentation System (SBAS) is a representative differential GNSS system, which is used for the navigation performance improvement of Global Navigation Satellite System (GNSS) users. SBAS has been developed focusing on the securement of user integrity so that it can be used for the navigation in aviation fields. Accordingly, the development of SBAS has been completed, and it has been actively used in the United States, Europe, and Japan. As the new satellite of Global Positioning System (GPS) recently started to broadcast new civil signals (L5 frequency), the methods for improving user navigation performance in SBAS using this signal have also been studied. In Korea, to keep pace with these circumstances, full-scale SBAS development is expected to start in 2014, and studies on dual-frequency SBAS using L1/L5 frequencies will also be performed. In this study, before the full-scale development of dual-frequency SBAS in Korea, a simulation was performed to predict the performance and analyze the expected effects.

GNSS 신호 설계 동향조사 (Survey of Signal Design for Global Navigation Satellite Systems)

  • 전종현;이정행;강정완;김선우;주정민
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

러시아의 GLONASS 항법 파라미터 및 성능 분석 (Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS)

  • 최창묵
    • 한국항해항만학회지
    • /
    • 제42권1호
    • /
    • pp.17-24
    • /
    • 2018
  • 러시아의 위성항법시스템인 GLONASS(GLObal NAvigation Satellite System)는 2011년 10월 이후 정상적으로 재가동되었으며 지속적으로 시스템 구성이 현대화되고 있다. 최근 2017년 10월 16일 발사된 GLONASS 752 위성(GLONASS-M)이 정상 작동됨에 따라서 2세대 위성인 GLONASS-M 22기와 3세대 위성인 GLONASS-K 1기로 총 24기 위성이 구축되었다. 따라서 본 논문은 현재의 GLONASS 위성 항법시스템의 항법위성으로부터 실데이터를 수신하여 항법파라미터 특성 및 성능을 분석하고자 하였다. 수신된 데이터를 분석한 결과 항상 항법위성 5~11기가 동시에 가시선상에 있어서 항법신호를 수신할 수 있음을 확인하였으며, 실험에 이용된 위성들의 DOP(Dilution of Position)는 GDOP, PDOP, HDOP, VDOP, TDOP 각각 2.790, 2.424, 1.169, 2.123, 1.381을 얻었다. 또한 수신된 데이터의 위치 정밀도를 분석한 결과 표준편차 1.4m로 매우 우수하였다. 결과적으로 GLONASS와 GPS(Global Positioning System)는 성능이 거의 동일하며 향후 GLONASS 시스템의 이용 확대가 기대된다.

전역 초음파 시스템을 이용한 이동 로봇의 자율 주행 (Autonomous Navigation of Mobile Robot Using Global Ultrasonic System)

  • 황병훈;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

Accuracy Evaluation of KASS Augmented Navigation by Utilizing Commercial Receivers

  • Sung-Hyun Park;Yong-Hui Park;Jin-Ho Jeong;Jin-Mo Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.349-358
    • /
    • 2023
  • The Satellite-Based Augmentation System (SBAS) plays a significant role in the fields of aviation and navigation: it corrects signal errors of the Global Navigation Satellite System (GNSS) and provides integrity information to facilitate precise positioning. These SBAS systems have been adopted as international standards by the International Civil Aviation Organization (ICAO). In recent SBAS system design, the Minimum Operational Performance Standards (MOPS) defined by the Radio Technical Commission for Aeronautics (RTCA) must be followed. In October 2014, South Korea embarked on the development of a Korean GPS precision position correction system, referred to as Korea Augmentation Satellite System (KASS). The goal is to achieve APV-1 Standard of Service Level (SoL) service level and acquisition of CAT-1 test operating technology. The first satellite of KASS, KASS Prototype 1, was successfully launched from the Guiana Space Centre in South America on June 23, 2020. In December 2022 and June 2023, the first and second service signals of KASS were broadcasted, and full-scale KASS correction signal broadcasting is scheduled to start at the end of 2023. The aim of this study is to analyze the precision of both the GNSS system and KASS system by comparing them. KASS is also compared with Japan's Multi-functional Satellite Augmentation System (MSAS), which is available in Korea. The final objective of this work is to validate the usefulness of KASS correction navigation in the South Korean operational environment.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

위성항법시스템 위성체 운용 현황 및 기술 동향 (Status and Technological Survey of Navigation Satellite Systems)

  • 김용래;김정래;최종연
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.35-44
    • /
    • 2024
  • This investigation primarily focuses on the generational characteristics of satellites utilized in the existing Global Navigation Satellite System (GNSS) and Regional Navigation Satellite System (RNSS), with a central emphasis on comparing the operational status of the latest generation satellites. Variations among satellite generations in physical attributes, energy consumption, and timekeeping are observed, enabling an exploration of the developmental trends over successive generations. Through a comparative analysis of the latest generation satellites, particularly in terms of performance, this study aims to furnish essential insights into the satellites employed within each system. Consequently, it will contribute to a foundational understanding of the past, present, and future GNSS satellites.