• 제목/요약/키워드: Global positioning system/Global navigation satellite system

검색결과 307건 처리시간 0.022초

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권4호
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.

The Application of Satellite Positioning Technology and its Industrialization in China

  • Lizhong, Zheng;Xiuwan, Chen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 2002
  • Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, navigation activities and accurate surveying measurements since 90s in the last century due to it advantage in providing all-weather, real-time, three dimensional and high precision positioning information, as well as speed and accurate timing information. By now, it has already formed a new hi-tech industry basically. This paper briefly reviews the development of the global satellite positioning and navigation technologies including the basic information of China′s "Plough navigation system", introduces the history of satellite positioning technology and its major application fields as well as the status quo of this being industrialized trade in China, gives an account of the writers′ vision for the application and prospect of the satellite positioning technologies in China, and approaches the tactics and stresses of the satellite positioning technology′s application and its industrialization future in China.

  • PDF

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

Ionospheric Model Performance of GPS, QZSS, and BeiDou on the Korean Peninsula

  • Serim Bak;Beomsoo Kim;Su-Kyung Kim;Sung Chun Bu;Chul Soo Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.113-119
    • /
    • 2023
  • Satellite navigation systems, with the exception of the GLObal NAvigation Satellite System (GLONASS), adopt ionosphere models and provide ionospheric coefficients to single-frequency users via navigation messages to correct ionospheric delay, the main source of positioning errors. A Global Navigation Satellite System (GNSS) mostly has its own ionospheric models: the Klobuchar model for Global Positioning System (GPS), the NeQuick-G model for Galileo, and the BeiDou Global Ionospheric delay correction Model (BDGIM) for BeiDou satellite navigation System (BDS)-3. On the other hand, a Regional Navigation Satellite System (RNSS) such as the Quasi-Zenith Satellite System (QZSS) and BDS-2 uses the Klobuchar Model rather than developing a new model. QZSS provides its own coefficients that are customized for its service area while BDS-2 slightly modifies the Klobuchar model to improve accuracy in the Asia-Pacific region. In addition, BDS broadcasts multiple ionospheric parameters depending on the satellites, unlike other systems. In this paper, we analyzed the different ionospheric models of GPS, QZSS, and BDS in Korea. The ionospheric models of QZSS and BDS-2, which are based in Asia, reduced error by at least 25.6% compared to GPS. However, QZSS was less accurate than GPS during geomagnetic storms or at low latitude. The accuracy of the models according to the BDS satellite orbit was also analyzed. The BDS-2 ionospheric model showed an error reduction of more than 5.9% when using GEO coefficients, while in BDS-3, the difference between satellites was within 0.01 m.

위성항법시스템 운영 현황 및 개발 계획 (Current Status and Development Plan of Global Navigation Satellite System)

  • 하지현;천세범
    • 항공우주산업기술동향
    • /
    • 제8권2호
    • /
    • pp.46-53
    • /
    • 2010
  • 이 논문에서는 위성항법시스템의 운영 현황과 개발 계획에 대하여 기술하였다. 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System), 유럽의 Galileo, 중국의 Beidou/Compsss, 그리고 일본의 QZSS(Quasi-Zenith Satellite System) 에 대하여 시스템의 구성과 운영 위성 상태에 대하여 기술하였으며, 각 시스템의 개발 계획과 현대화에 대하여 기술하였다.

  • PDF

위성항법시스템기반의 위치오차에 관한 연구 (A Study of Positioning Error Based on the Satellite Navigation System)

  • 박지호;김남혁
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.23-33
    • /
    • 2012
  • 본 논문은 위성항법시스템을 이용한 정밀 단독측위에 관한 연구이다. 위성항법시스템이 가지고 있는 내재적인 문제점인 장애물 등 여러 가지 환경 요인으로 인해 신호를 수신할 수 없는 경우 음영지역과 위치오차 증가 등에 관한 연구논문이다. 논문에서는 다양한 수신기의 성능 분석과 대도로 중앙, 대도로 측면, 주택가, 고층 건물 주변의 골목길 등 다양한 환경에 따른 위성수와 DOP(Dilution of Precision)변화 그리고 위치오차의 변화 등을 분석하였다. 그리고 환경 변화에 따른 위치오차 발생 범위와 오차 원인을 파악하여, 위성항법시스템의 신뢰성과 안정성을 높이는데 그 목적이 있다.

Evaluation of Navigation System Performance of GPS/GLONASS/Galileo/BeiDou/QZSS System using High Performance GNSS Receiver

  • Park, Yong-Hui;Jeong, Jin-Ho;Park, Jin-Mo;Park, Sung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.333-339
    • /
    • 2022
  • The satellite navigation system was developed for the purpose of calculating the location of local users, starting with the Global Positioning System (GPS) in the 1980s. Advanced countries in the space industry are operating Global Navigation Satellite System (GNSS) that covers the entire earth, such as GPS, GLONASS, Galileo, and BeiDou, by establishing satellite navigation systems for each country. Regional Navigation Satellite Systems (RNSS) such as QZSS and NavIC are also in operation. In the early 2010s, only GPS and GLONASS could calculate location using a single system for location determination. After 2016, the EU and China also completed the establishment of GNSS such as Galileo and BeiDou. As a result, satellite navigation users can benefit from improved availability of GNSS. In addition, before Galileo and BeiDou's Full Operational Capability (FOC) declaration, they used combined navigation algorithms to calculate the user's location by adding another satellite navigation system to the GPS satellites. Recently, it may be possible to calculate a user's location for each navigation system using the resources of a single system. In this paper, we evaluated the performance of single system navigation and combined navigation solutions of GPS, GLONASS, Galileo, BeiDou and QZSS individual navigation systems using high-performance GNSS receivers.

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권1호
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

차분 기법을 적용한 GPS 반송파 위상 측정치 고장 검사 (Application of the Difference Method in a Fault Test on GPS Carrier Phase Measurements)

  • 손은성;임성혁;김군택
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.601-607
    • /
    • 2017
  • 이 연구에서는 GNSS (global navigation satellite system) 인프라 기반 측위 보정정보 생성을 위한 전처리 단계인 GPS (global positioning system) 반송파 위상 측정치의 고장 검사를 수행하였다. 기존 CARST (carrier acceleration ramp step test) 방법은 수신기 시계 오차를 제거하기 위해 평균값을 이용함으로써 검사 대상에 영향을 준다. 따라서 이 연구에서는 차분 기법을 적용하여 기존 CARST 결과와 비교하였다. 실 데이터에 인위적인 고장을 인가하여 고장 시뮬레이션을 수행한 결과 차분 기법을 적용할 경우 각각의 위성에 대해 독립적인 고장 검출이 가능한 것으로 판단되었으며 단일차분과 이중차분은 유사한 결과를 나타내었다. 실 데이터를 이용하여 기존의 방법과 비교한 결과 위성 간 차분, 수신국간 차분 결과의 장단점을 확인할 수 있었다. 그러나 결과 값에 대한 위성 및 수신기 시계 오차의 영향은 추가적인 분석이 필요할 것으로 판단된다.

위성항법시스템 서비스 및 신호 현황 (Status of Navigation Satellite System Services and Signals)

  • 한가희 ;방유진;임형수 ;이상욱 ;박승근
    • 전자통신동향분석
    • /
    • 제38권2호
    • /
    • pp.12-25
    • /
    • 2023
  • Positioning, navigation, and timing information has become a key element in the national core infrastructure and for emerging technologies, such as autonomous driving, lunar exploration, financial systems, and drones. Therefore, the provision of that information by navigation satellite systems is becoming increasingly important. Existing systems such as GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), and BDS (BeiDou Navigation Satellite System) also provide augmentation, safety-of-life, search & rescue and short message communication and authentication services to increase their competitiveness. Those services and the signals generated for their provision have their own purpose and requirements. This article presents an overview of existing or planned satellite navigation satellite system services and signals, aiming to help understand their current status.