• Title/Summary/Keyword: Global modeling

Search Result 916, Processing Time 0.028 seconds

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

A method of global-local analyses of structures involving local heterogeneities and propagating cracks

  • Kurumatani, Mao;Terada, Kenjiro
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.529-547
    • /
    • 2011
  • This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.

Press and Die Deformation for a Precise Semiconductor Lead Frame (반도체 산업의 정밀리드프레임에 대한 프레스 및 금형 변형 예측)

  • Hong, S.;Yoon, Y.;Eom, S.;Hwang, J.;Lee, D.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.206-210
    • /
    • 2014
  • The metal lead frame, a semiconductor component, has product tolerances in micro units as compared to products made with a larger size mold. Therefore, small deflections of the mold and of the press as well as the press molding process itself have a strong influence on accuracy of the product. Hence, it is necessary for the process design to consider the structural response of the mold and the press during deformation. In the current study, the mold deflection and pressure on the punch is examined using the finite element modeling (FEM) program ABAQUS. The results from the simulation were verified with the dynamic deformation measurement equipment using digital image correlation (DIC).

A new global/local analysis using MLS (Moving Least Square)-based finite elements (이동최소제곱 기반 유한요소를 이용한 새로운 다중 스케일 해석)

  • Lim, Jae-Hyuk;Im, Se-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.405-410
    • /
    • 2007
  • We present a new global/local analysis with the aid of MLS(Moving Least Square)-based finite elements which can handle an arbitrary number of nodes on every element side. It give a great flexibility in constructing finite element meshes at the specified local regions without remeshing. Compared to other type global/local analysis, it does not require any superimposed mesh or need not solve the equilibrium equation twice as well as shows an excellent accuracy. To demonstrate the performance of proposed scheme, we will show several examples in relation to capturing highly local stress field.

  • PDF

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

A study on the Project Management Plan (PMP) Development Appropriate for Global Construction Environment (글로벌 건설 환경에 적합한 건설사업관리계획서(PMP)에 관한 연구)

  • Yang, Myung-duck;Kim, Chang-kwon;Yang, Jae-woong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.107-108
    • /
    • 2015
  • It's became essential that Korea construction companies should enter into the overseas construction market for their growth and sustainability. In order to comply with the client's required global standard and to compete with in the international market, the shifting the construction project management system to global level is required. In accordance with the demand, this paper proposes the top-level document of construction project management system as a to-be model that utilized in overseas construction projects. The project management plan ("PMP") suggested in this paper is not only the most appropriate one, which complies with the global standard, to be used when companies bid for international construction projects against foreign competitors but also has the process modeling and hierarchical structure.

  • PDF