• 제목/요약/키워드: Global localization

검색결과 286건 처리시간 0.032초

Global Positioning System for Mobile Robot Navigation in an Indoor Environment

  • Park, Soo-Min;Lee, Bong-Ki;Jin, Tae-Seok;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.37.1-37
    • /
    • 2002
  • Localization is one of the most important functions for the mobile robot navigating in the unstructured environment. Most of previous localization schemes estimate current position and pose of mobile robot by applying various localization algorithms with the information obtained from sensors which are set on the mobile robot, or by recognizing an artificial landmark attached on the wall, or objects of the environment as natural landmark in the indoor environment. Several drawbacks about them have been brought up. To compensate the drawbacks, a new localization method that estimates the global position of the mobile robot by using a camera set on ceiling in the corridor is proposed. This sch...

  • PDF

실내 환경에서의 경비로봇용 주행시스템 (A Navigation System for a Patrol Robot in Indoor Environments)

  • 최병욱;이영민;박정호;신동관
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF

다국적기업의 현지화를 위한 경영문화 연구 - 베트남 진출 네슬레와 삼성전자의 사례 비교 - (The Globalization and Corporate Culture of Nestle and Samsung Electronics in Vietnam)

  • 이승영;김현철
    • 통상정보연구
    • /
    • 제9권4호
    • /
    • pp.375-393
    • /
    • 2007
  • The purpose of this study is to define the different stage of global management cultures for localization from the case study of two respective multinational corporations, Nestle and Samsung Electronics invested in Vietnam, and then to find out on how Korean multinational corporations can reduce the gap of global management culture compared to global multinational corporations. In fact, Samsung has been pretty much being on a right track from the global marketing management perspective, however still stand at the beginning stage in terms of leading the global corporate culture. In comparison to Nestle with over 130 years of worldwide business experience, Samsung Electronics having only a decade global experience as a Korean multinational corporation has been found to have an obvious gap in terms of globalization which is mainly caused by global corporate culture. Even though it doesn’t seem realistic for Korean multinational corporations to immediately catch up the gap of global corporate culture against global multinational corporations with long years of global experiences and history, Korean multinational corporations need to track the foot print of every steps of globalization particularly focused on the local management culture of global multinational corporations, so that they will be able to shorten the timing to develop the true meaning of global corporate culture being evolved from the Korean management style.

  • PDF

Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots

  • Nurmaini, Siti;Zarkasi, Ahmad
    • Journal of Information Processing Systems
    • /
    • 제11권3호
    • /
    • pp.370-388
    • /
    • 2015
  • The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several tasks. Especially in the case of multi-robotic applications, localization is the process for determining the positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are utilized in the localization process. However, these sensors produce a large amount of computational resources to process complex algorithms, because the process requires environmental mapping. Currently, combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely available in indoor and outdoor environments. They allow for a type of efficient global localization that demands a relatively low amount of computational resources and for the independence of specific environmental features. However, the inherent instability in the wireless signal does not allow for it to be directly used for very accurate position estimations and making difficulty associated with conducting the localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of learning and generalization to reduce the effect of incorrect information and increases the accuracy of the agent's position. The results show that by using simple pyramid RAM-base Neural Network approach, produces low computational resources, a fast response for processing every changing in environmental situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in real time.

COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상 (Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data)

  • 김동일;송재복;최지훈
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.

Terrain-Based Localization using Particle Filter for Underwater Navigation

  • Kim, Jin-Whan;Kim, Tae-Yun
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.89-94
    • /
    • 2011
  • Underwater localization is a crucial capability for reliable operation of various types of underwater vehicles including submarines and underwater robots. However, sea water is almost impermeable to high-frequency electromagnetic waves, and thus absolute position fixes from Global Positioning System (GPS) are not available in the water. The use of acoustic telemetry systems such as Long Baseline (LBL) is a practical option for underwater localization. However, this telemetry network system needs to be pre-deployed and its availability cannot always be assumed. This study focuses on demonstrating the validity of terrain-based localization techniques in a GPS-denied underwater environment. Since terrain-based localization leads to a nonlinear estimation problem, nonlinear filtering methods are required to be employed. The extended Kalman filter (EKF) which is a widely used nonlinear filtering algorithm often shows limited performance under large initial uncertainty. The feasibility of using a particle filter is investigated, which can improve the performance and reliability of the terrain-based localization.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

Extended Information Overlap Measure Algorithm for Neighbor Vehicle Localization

  • Punithan, Xavier;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권4호
    • /
    • pp.208-215
    • /
    • 2013
  • Early iterations of the existing Global Positioning System (GPS)-based or radio lateration technique-based vehicle localization algorithms suffer from flip ambiguities, forged relative location information and location information exchange overhead, which affect the subsequent iterations. This, in turn, results in an erroneous neighbor-vehicle map. This paper proposes an extended information overlap measure (EIOM) algorithm to reduce the flip error rates by exchanging the neighbor-vehicle presence features in binary information. This algorithm shifts and associates three pieces of information in the Moore neighborhood format: 1) feature information of the neighboring vehicles from a vision-based environment sensor system; 2) cardinal locations of the neighboring vehicles in its Moore neighborhood; and 3) identification information (MAC/IP addresses). Simulations were conducted for multi-lane highway scenarios to compare the proposed algorithm with the existing algorithm. The results showed that the flip error rates were reduced by up to 50%.

  • PDF

초음파 센서를 이용한 이동로봇의 자기위치 파악 알고리즘 (A Sonar-based Position Estimation Algorithm for Localization of Mobile Robots)

  • 조웅열;오상록;유범재;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.159-162
    • /
    • 2002
  • This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.

  • PDF