• Title/Summary/Keyword: Global existence

Search Result 310, Processing Time 0.019 seconds

GLOBAL EXISTENCE FOR VOLTERRA-FREDHOLM TYPE FUNCTIONAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS

  • Vijayakumar, V.;Prakash, K. Alagiri;Murugesu, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.17-28
    • /
    • 2013
  • In this paper, we study the global existence of solutions for the initial value problems for Volterra-Fredholm type functional impulsive integrodifferential equations. Using the Leray-Schauder Alternative, we derive conditions under which a solution exists globally.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

  • Kim, Nam-Kwon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.315-324
    • /
    • 2012
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$([0; T);$L^2$), T > 0, $2{\leq}p{\leq}+\infty$ satisfy a certain condition. This condition common appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain $\epsilon$ tends to zero.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL TYPE

  • Zhao, Lili;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.577-594
    • /
    • 2013
  • In this paper, we study the global stability and the existence of almost periodic solution of high-order Hopfield neural networks with distributed delays of neutral type. Some sufficient conditions are obtained for the existence, uniqueness and global exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. An example is given to show the effectiveness of the proposed method and results.

A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY CONDITIONS AND NONLOCAL SOURCES

  • Gao, Wenjie;Han, Yuzhu
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.629-644
    • /
    • 2012
  • In this work, the authors study the blow-up properties of solutions to a parabolic system with nonlocal boundary conditions and nonlocal sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and precise blow-up rate estimates are also obtained.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

  • IQBAL M. BATIHA;NABILA BARROUK;ADEL OUANNAS;ABDULKARIM FARAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.893-906
    • /
    • 2023
  • In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 × 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.

GLOBAL EXISTENCE AND STABILITY OF A KORTEWEG-DE VRIES EQUATION IN NONCYLINDRICAL DOMAIN

  • Ha, Tae Gab
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.565-572
    • /
    • 2019
  • In this paper, we consider a Korteweg-de Vries equation in noncylindrical domain. This work is devoted to prove existence and uniqueness of global solutions employing Faedo-Galerkin's approximation and transformation of the noncylindrical domain with moving boundary into cylindrical one. Moreover, we estimate the exponential decay of solutions in the asymptotically cylindrical domain.