• Title/Summary/Keyword: Global cycle

Search Result 731, Processing Time 0.027 seconds

A Carbon Cycle Model Based Method for Carbon Neutrality Assessment (탄소순환 모델기반 탄소중립 평가방법)

  • Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.433-438
    • /
    • 2022
  • A carbon cycle model based method is proposed in order to evaluate the effectiveness of various policies and projects to achieve carbon neutrality. The proposed model was validated by properly reproducing the increase in the concentration of carbon dioxide in the atmosphere and the rise of the global average temperature from the data of anthropogenic carbon emissions and deforestation since the industrial revolution. As a case study, a carbon cycle impact assessment was performed for deforestation, reforestation, and afforestation. It was verified that the increase of carbon dioxide in the atmosphere is attributed not only to fossil fuel usage, but also to deforestation, and that even if deforestation is immediately followed by reforestation, it takes very long to return to the initial concentration. The proposed method is expected to be eventually applicable to simulation of potential climate control in the future, contributing to safety verification of various climate engineering techniques.

Environmental Impact Assessment of Buildings based on Life Cycle Assessment (LCA) Methodology (전과정평가(LCA) 방법을 이용한 건축물에 대한 환경영향 평가 방법)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jeong, Kwang-Bok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.84-93
    • /
    • 2012
  • Most of the studies on reduction of buildings' environmental burden in the construction industry have been focused on carbon dioxide emission, although there are various kinds of environmental issues such as global warming, acidification, and etc. which are considered by many researchers. Therefore, this study defined and suggested six impact categories and the principles to assess each impact for the assessment of comprehensive environmental impacts of buildings. The six impact categories are abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, and photochemical oxidation. A case study has been conducted through comparative analysis of two structural design alternatives to confirm the necessity of assessing the six impact categories. That is, the results of global warming potential and the six impacts proposed in this study were compared. By comparing the results of only global warming potential, the second design alternative using 24MPa concrete was chosen as a better alternative, while the first design alternative using 21MPa concrete was resulted as a better alternative when six impact categories were considered. The results mean that the assessment of various environmental impacts is an appropriate and reasonable approach and the comprehensive assessment offers more reliable results of environmental impacts in the building construction.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part I : Development of Driving Cycle (전기 자동차 성능 평가를 위한 도심 주행 모드 개발 Part I : 주행 모드 개발)

  • Yang, Seong-Mo;Jeong, Nak-Tak;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;Kim, Hyun-Soo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.117-126
    • /
    • 2014
  • Recently, due to various environmental problems such as global warming, increasing of international oil prices and exhaustion of resource, a paradigm of world automobile market is rapidly changing from vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid electric Vehicle) and FCEV (Fuel Cell Electric Vehicle). There are many driving cycles for performance evaluation of conventional vehicles. However there is a lack of researches on driving cycle for EV. This study is composed of part 1 and part 2. In this paper part 1, in order to develop urban driving cycle for performance evaluation of electric vehicles, Gwacheon-city patrol route of police patrol car was selected. Actual driving test was performed using EV. The driving data such as velocity, time, GPS information etc. were recorded. GUDC-EV (Gwacheon-city Urban Driving Cycle for Electric Vehicles) including road gradient was developed through the results of analyzing recorded data. Reliability of the driving cycle development method was substantiated through comparison of electricity performance. In the second part of this study, the developed driving cycle was compared to simulation result of the existing urban driving cycle. Verification of the developed driving cycle for EV performance evaluation was described.

High Performance of Temperature Gradient Chamber Newly Built for Studying Global Warming Effect on a Plant Population

  • Lee, Jae-Seok;Tetsuyuki Usami;Takehisa Oikawa;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • To study the effect of global warming on the growth of plants and plant populations throughout their life cycle under a field-like condition, we constructed a Temperature Gradient Chamber (TGC) in Tsukuba, Japan. The chamber had slender shape : 30 m long. 3 m wide, and 2.5 m high. That satisfactory performance was confirmed by a test throughout all seasons in 1998: the projected global warming condition in the near future was simulated. That is, independent of a great daily or seasonal change in ambient meteorological conditions, air temperatures at the air outlet were warmed 5$^{\circ}C$ higher than those at the ambient (the annual mean was 14.3$^{\circ}C$) with precision of ${\pm}$0.2$^{\circ}C$ (the annual means were 19.2$^{\circ}C$) with a rising rate of approximately 1$^{\circ}C$ every 5 m. This chamber will enable us to study the effects of global warming on growth of plants and plant populations because their abilities to control air temperature are excellent. TGC is expected that it would be utilized for studying the effect of global warming on plant growth under natural weather conditions.

  • PDF

Eco-Friendly Mechanical Design of Touch-Screen Monitor Stand through Life-Cycle Assessment(LCA) (전과정평가(LCA)에 기반한 터치스크린 모니터 스탠드의 친환경적 기구설계)

  • Yi, Hwa-Cho;Jang, Woon-Geun;Han, Hoon;Jo, Young-Rae;Jeon, Chan-gon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.117-124
    • /
    • 2012
  • Recent years, many industries acknowledge that environmental substantiality of products must be an essential role and it is one of the major importances for industries to consider the environmental impacts of products at the early stages of product development. This study investigated eco-design parameters and $CO_2-eq$. emissions in each stage of raw material acquisition, manufacturing, transportation, use and disuse in life cycle of touch monitor stand based on Eco-Design. In this study, to fulfill of Eco-Design, the environmental impact assessment of through LCA(Life cycle assessment) was carried out with benchmarking monitor stand and we suggested the direction of new design of touch monitor stand mechanism based on eco-friendly considerations. New design based on LCT(Life Cycle Thinking) showed that the following eco-friendly considerations at the early stage of design to be helpful to reduce GWP(Global Warming Potential) [kg $CO_2-eq$.] in new monitor stand development and it is necessary for Eco-Design process of the product.

Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

  • Oh, Suyeon;Kim, Bogyeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

A Study on the Characteristics of Environmental Impact with the Seat Material of Electric Motor Unit (EMU) (전동차 의자의 재질에 따른 환경부하 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Bo-Kyong;Chun, Yoon-Young;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.524-531
    • /
    • 2006
  • Environmental problem is one of important global issues. Transportations are main pollutant emission sources. Although railroad is stilt an environmental-friendly transportation, its environmental impact has been increased continuously. Especially, because a large amount of environmental impact is released from vehicles and facilities, it is necessary to assess and to reduce their environmental impact. Life cycle assessment (LCA) is a representative method which can evaluate environment impact through the whole life cycle of a product or a process. In this study, the environmental impact of seat in the electric motor unit (EMU) was analyzed quantitatively with its material using lift cycle assessment (LCA). As a result, the characteristics of environmental impact were investigated differently with the material of seat. Among ten impact categories, the seat with aluminum and FRP showed the highest ozone depletion (OD). On the other hand, in the seat with stainless steel and plastic, fresh water aquatic ecotoxicity (FAET) and marine water aquatic ecotoxicity (MAET) were high relatively. Therefore, the parts of EMU must be selected considering the characteristics of environmental impact in future.

The Exchange of Reduced Sulfur Gases Across the Atmosphere-Teerrestrial Biosphere Interface

  • Kim, Ki-Hyun;Zhen Yand;Shiming Wang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.1-18
    • /
    • 1996
  • In this review, the significance of terrestrial ecosystems in the global sulfur budget has been reviewed based on the currently available databases covering the topic. In the section 1, we describe our current understanding of natural sulfur cycle in relation to most well-known natural reservoir, oceanic environment. The sections 2 and 3 provide the fundamental pictures of the rerrestrial sulfur cycle with respect to the relative importance of its individe the fundamental pictures of the terrestrial sulfur cycle with respect to the section 3, previously reported flux values for several major sulfur gases are presented for each reservoir and are intercompared to derive representative fluxes for the respective environment. In the section 4, source mechanisms for volatile sulfur species are dealt for both microscale and macroscale processes leading to their productions. In the section 5, environmental factors controlling the exchange of biogenic sulfur gases across the air-surface have been discussed. In the section 6, environmental fate of sulfur gases released into the atmosphere has been described. Finally in tie section 7, as concluding remarksm we discuss directions and suggestions to overcome various limitations encountered from previous measurement investigations of natural sulfur cycle in diverse natural ecological systems.

  • PDF

A Study on the Revitalization Pattern of Industry in Decline: Focusing on Korean Shoe Industry

  • LEE, Kang-Sun;CHOI, Kyu-Jin;KANG, Sung-Wook;CHO, Dae-Myeong
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • Purpose - This study aims to study the activation pattern of declining industries by applying the Gompertz growth model using available resources based on the theory of industrial life cycle, classifying declining industries among Korean manufacturing industries, and identifying resource input characteristics. Research design and methodology - This study was conducted by combining the Gompertz growth model that predicts the limit of output based on available resources under the industrial life cycle theory. Using Gompertz model, this study analyzed the life cycle of 39 Korean manufacturing industries from the perspective of domestic production, number of employees, and fixed assets Results - According to a life cycle analysis of 39 manufacturing industries in Korea, the computer, textile, and shoe industries were classified as declining industries. Among them, research on resource input characteristics on the shoe industry showed that domestic production and the number of employees decreased, while the proportion of domestic R&D personnel and the number of research departments gradually increased. Conclusion - Among the declining industries in Korea, the shoe industry is considered to revitalize the industry, that is, to extend the life of the declining industry by offshoring its production site and improving constitution with a "R&D center for global" support.

Environmental Effect Analysis for PV system using LCA (LCA를 이용한 태양광발전의 환경영향분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.737-741
    • /
    • 2007
  • This paper analyses the environmental effect of 100kw PV system installed in Tibet using Life Cycle Assessment(LCA). Then, energy payback time(EPT) and life-cycle $CO_2$ emission rate are estimated based on life-cycle of the PV system. As a result of the estimation, 6 year of EPT and 20 g-C/kWh of $CO_2$ emission rate are obtained. In China, average $CO_2$ emission rate of fossil fuel power generation plant is 260 g-C/kWh. This shows that PV system would be very promising for global environmental issues. For advanced LCA, we need to collect detailed and various data about raw material of PV system.

  • PDF