• Title/Summary/Keyword: Global Solution

Search Result 1,302, Processing Time 0.027 seconds

A Study on the Reinforcement Plan for the Local Government to Respond to the Climate Change through the Survey of Residents Consciousness - Focused on the Gangnam-gu - (주민 의식 조사를 통한 지자체 기후변화 대응 강화 방안에 관한 연구 - 강남구를 중심으로 -)

  • Choi, Bong Seok;Park, Kyung Eun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.83-94
    • /
    • 2014
  • Gangnam-gu, where the survey of residents' consciousness has been made in this study, is the district shows the highest rate of the energy consumption and greenhouse gas emission per unit area except some industrial districts such as Gwangyang, Ulsan, and Pohang. The greenhouse gas emission amount of Gangnam-gu is 4,863,765 $tCO_2$ which accounts for 10 % of the total discharging amount of Seoul, 50,330,356 $tCO_2$, which is ranked the top greenhouse gas emission rate in the commercial category and the 2nd place in the household category. The average recognition rate for the 5 subjects of the global warming phenomenons has indicated to be 83.58%. A survey questioning about the main agent to reduce the greenhouse gas, in all age groups except 20s have replied that it should be done by themselves, the residents of Gangnam-gu. For the question of the role of local government to respond to the climate change, the necessity of establishing infrastructure which is suitable for walking and biking. For the other question about the educational facilities to cope with the climate change, many answered the relevant education should be processed from the middle and high schools. For the practical activities in daily life to respond to the climate change, many replies have shown that the energy and resource conservation has been practiced pretty well broadly, but the ecomileage (former carbon mileage) has not been practiced well. Also, many replies have pointed that there were no benefits or rewards for the people who practiced the eco-mileage in their daily lives, which indicates that a kind of incentive is necessary for the efforts to respond to the climate change from the local government to execute the policy substantially and effectively. This study has the purpose to search the political countermeasures to improve the potentiality to reduce the green house gas emission rate through the residents conscious survey about climate change and the political solution by the local government to improve the certain items which showed the lower awareness rate.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

A Study on the Key Factors Affecting Big Data Use Intention of Agriculture Ventures in Terms of Technology, Organization and Environment: Focusing on Moderating Effect of Technical Field (농업벤처기업의 빅데이터 활용의도에 영향을 미치는 기술·조직·환경 관점의 핵심요인 연구: 기술분야의 조절효과를 중심으로)

  • Ahn, Mun Hyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.249-267
    • /
    • 2021
  • The use of big data accumulated along with the progress of digitalization is bringing disruptive innovation to the global agricultural industry. Recently, the government is establishing an agricultural big data platform and a support organization. However, in the domestic agricultural industry, the use of big data is insufficient except for some companies in the field of cultivation and growth. In this context, this study identifies factors affecting the intention to use big data in terms of technology, organization and environment, and also confirm the moderating effect of technical field, focusing on agricultural ventures which should be the main entities in creating innovation by using big data. Research data was obtained from 309 agricultural ventures supported by the A+ Center of FACT(Foundation of AgTech Commercialization and Transfer), and was analyzed using IBM SPSS 22.0. As a result, Among technical factors, relative advantage and compatibility were found to have a significant positive (+) effect. Among organizational factors, it was found that management support had a positive (+) effect and cost had a negative (-) effect. Among environmental factors, policy support were found to have a positive (+) effect. As a result of the verification of the moderating effect of technology field, it was found that firms other than cultivation had a moderating effect that alleviated the relationship between all variables other than relative advantage, compatibility, and competitor pressure and the intention to use big data. These results suggest the following implications. First, it is necessary to select a core business that will provide opportunities to generate new profits and improve operational efficiency to agricultural ventures through the use of big data, and to increase collaboration opportunities through policy. Second, it is necessary to provide a big data analysis solution that can overcome the difficulties of analysis due to the characteristics of the agricultural industry. Third, in small organizations such as agricultural ventures, the will of the top management to reorganize the organizational culture should be preceded by a high level of understanding on the use of big data. Fourth, it is important to discover and promote successful cases that can be benchmarked at the level of SMEs and venture companies. Fifth, it will be more effective to divide the priorities of core business and support business by agricultural venture technology sector. Finally, the limitations of this study and follow-up research tasks are presented.

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media (천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구)

  • Hwang, Huijeong;Lee, Hyunseung;Lee, Soojin;Jung, Jaewoo;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

A Study on the Support System for Reinforcement of Competitiveness of Small Business persons - Mainly Focused on Support System for Small Business Persons - (소상공인 경쟁력 강화의 지원제도에 관한 연구 - 소상공인 지원제도를 중심으로 -)

  • Woo, Dae-IL;Lee, Sang-Youn
    • The Korean Journal of Franchise Management
    • /
    • v.2 no.2
    • /
    • pp.95-110
    • /
    • 2011
  • As global economic conditions are getting uneasy and polarization of our economy is intensified, the economic sentiment of small businesses is still low and unstable. The collapse of worldwide banking systems due to sub prime crisis in 2007 became the catalyst that shakes financial industries in each country in the world; the most sentiment people, small businesspersons, also have hard time facing survival way out, facing a great crisis. All organizing powers including manufactures, wholesales and retails are being gradually greater in mutual relations and dependence, and unstable factors about risks are also increasing. For exterior environmental and physical risk factors which cannot make small businesses survive themselves by developing ways out are eventually increasing, those who cannot cope with these factors face a great crisis. Although the government tries hard to overcome this situation conducting many ways, the effect does not continue. It is the real state that independent business markets including overall employment and establishing business have vicious cycle that they cannot be improved, due to increase of employment centered on short-term labors which lack durability in creation of employment and decline of household income. Recently, growth shows indication of slowdown because of multinational risk factors including financial crisis in each country in Europe, the death of Kim Jung-il, relationship with North Korea, and unstability of war situation in the Middle East Asia. Experts expect that growth rate will be about 4%, and independent business that ordinary people feel is still gloomy. It's reality that there is no adequate alternative for lack of jobs, unstable employment and a means of living after retirement. Also, the fact that large companies enter the market which is narrow and in the excessive competition should be an environmental factor that makes the situation worse. The business concept, a franchise, is the part we should think about whether it is the institutional solution that can guarantee independent businessmen stable life. Major companies are frightfully entering the market today, breaking the barrier to entry and shouting of a win-win with independent businesses. It's the small businesspersons who go through painful domestic recession, cannot predict the future and manage confusing and unstable independent business. It's very important to restore the domestic economy through wisely boosting consumption as soon as possible. It's also important to lead the situation by gathering powers of the government and related organizations, agonizing, suggesting solutions, and establishing accurate directions. The purpose of this study, therefore, is to suggest ways to strengthen competitiveness of small businesspersons by examining small business support policies which are currently implemented.

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

Interpreting Bounded Rationality in Business and Industrial Marketing Contexts: Executive Training Case Studies (집행관배훈안례연구(阐述工商业背景下的有限合理性):집행관배훈안례연구(执行官培训案例研究))

  • Woodside, Arch G.;Lai, Wen-Hsiang;Kim, Kyung-Hoon;Jung, Deuk-Keyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.3
    • /
    • pp.49-61
    • /
    • 2009
  • This article provides training exercises for executives into interpreting subroutine maps of executives' thinking in processing business and industrial marketing problems and opportunities. This study builds on premises that Schank proposes about learning and teaching including (1) learning occurs by experiencing and the best instruction offers learners opportunities to distill their knowledge and skills from interactive stories in the form of goal.based scenarios, team projects, and understanding stories from experts. Also, (2) telling does not lead to learning because learning requires action-training environments should emphasize active engagement with stories, cases, and projects. Each training case study includes executive exposure to decision system analysis (DSA). The training case requires the executive to write a "Briefing Report" of a DSA map. Instructions to the executive trainee in writing the briefing report include coverage in the briefing report of (1) details of the essence of the DSA map and (2) a statement of warnings and opportunities that the executive map reader interprets within the DSA map. The length maximum for a briefing report is 500 words-an arbitrary rule that works well in executive training programs. Following this introduction, section two of the article briefly summarizes relevant literature on how humans think within contexts in response to problems and opportunities. Section three illustrates the creation and interpreting of DSA maps using a training exercise in pricing a chemical product to different OEM (original equipment manufacturer) customers. Section four presents a training exercise in pricing decisions by a petroleum manufacturing firm. Section five presents a training exercise in marketing strategies by an office furniture distributer along with buying strategies by business customers. Each of the three training exercises is based on research into information processing and decision making of executives operating in marketing contexts. Section six concludes the article with suggestions for use of this training case and for developing additional training cases for honing executives' decision-making skills. Todd and Gigerenzer propose that humans use simple heuristics because they enable adaptive behavior by exploiting the structure of information in natural decision environments. "Simplicity is a virtue, rather than a curse". Bounded rationality theorists emphasize the centrality of Simon's proposition, "Human rational behavior is shaped by a scissors whose blades are the structure of the task environments and the computational capabilities of the actor". Gigerenzer's view is relevant to Simon's environmental blade and to the environmental structures in the three cases in this article, "The term environment, here, does not refer to a description of the total physical and biological environment, but only to that part important to an organism, given its needs and goals." The present article directs attention to research that combines reports on the structure of task environments with the use of adaptive toolbox heuristics of actors. The DSA mapping approach here concerns the match between strategy and an environment-the development and understanding of ecological rationality theory. Aspiration adaptation theory is central to this approach. Aspiration adaptation theory models decision making as a multi-goal problem without aggregation of the goals into a complete preference order over all decision alternatives. The three case studies in this article permit the learner to apply propositions in aspiration level rules in reaching a decision. Aspiration adaptation takes the form of a sequence of adjustment steps. An adjustment step shifts the current aspiration level to a neighboring point on an aspiration grid by a change in only one goal variable. An upward adjustment step is an increase and a downward adjustment step is a decrease of a goal variable. Creating and using aspiration adaptation levels is integral to bounded rationality theory. The present article increases understanding and expertise of both aspiration adaptation and bounded rationality theories by providing learner experiences and practice in using propositions in both theories. Practice in ranking CTSs and writing TOP gists from DSA maps serves to clarify and deepen Selten's view, "Clearly, aspiration adaptation must enter the picture as an integrated part of the search for a solution." The body of "direct research" by Mintzberg, Gladwin's ethnographic decision tree modeling, and Huff's work on mapping strategic thought are suggestions on where to look for research that considers both the structure of the environment and the computational capabilities of the actors making decisions in these environments. Such research on bounded rationality permits both further development of theory in how and why decisions are made in real life and the development of learning exercises in the use of heuristics occurring in natural environments. The exercises in the present article encourage learning skills and principles of using fast and frugal heuristics in contexts of their intended use. The exercises respond to Schank's wisdom, "In a deep sense, education isn't about knowledge or getting students to know what has happened. It is about getting them to feel what has happened. This is not easy to do. Education, as it is in schools today, is emotionless. This is a huge problem." The three cases and accompanying set of exercise questions adhere to Schank's view, "Processes are best taught by actually engaging in them, which can often mean, for mental processing, active discussion."

  • PDF

Organizational Buying Behavior in an Interdependent World (상호의존세계중적조직구매행위(相互依存世界中的组织购买行为))

  • Wind, Yoram;Thomas, Robert J.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.110-122
    • /
    • 2010
  • The emergence of the field of organizational buying behavior in the mid-1960’s with the publication of Industrial Buying and Creative Marketing (1967) set the stage for a new paradigm of thinking about how business was conducted in markets other than those serving ultimate consumers. Whether it is "industrial marketing" or "business-to-business marketing" (B-to-B), organizational buying behavior remains the core differentiating characteristic of this domain of marketing. This paper explores the impact of several dynamic factors that have influenced how organizations relate to one another in a rapidly increasing interdependence, which in turn can impact organizational buying behavior. The paper also raises the question of whether or not the major conceptual models of organizational buying behavior in an interdependent world are still relevant to guide research and managerial thinking, in this dynamic business environment. The paper is structured to explore three questions related to organizational interdependencies: 1. What are the factors and trends driving the emergence of organizational interdependencies? 2. Will the major conceptual models of organizational buying behavior that have developed over the past half century be applicable in a world of interdependent organizations? 3. What are the implications of organizational interdependencies on the research and practice of organizational buying behavior? Consideration of the factors and trends driving organizational interdependencies revealed five critical drivers in the relationships among organizations that can impact their purchasing behavior: Accelerating Globalization, Flattening Networks of Organizations, Disrupting Value Chains, Intensifying Government Involvement, and Continuously Fragmenting Customer Needs. These five interlinked drivers of interdependency and their underlying technological advances can alter the relationships within and among organizations that buy products and services to remain competitive in their markets. Viewed in the context of a customer driven marketing strategy, these forces affect three levels of strategy development: (1) evolving customer needs, (2) the resulting product/service/solution offerings to meet these needs, and (3) the organization competencies and processes required to develop and implement the offerings to meet needs. The five drivers of interdependency among organizations do not necessarily operate independently in their impact on how organizations buy. They can interact with each other and become even more potent in their impact on organizational buying behavior. For example, accelerating globalization may influence the emergence of additional networks that further disrupt traditional value chain relationships, thereby changing how organizations purchase products and services. Increased government involvement in business operations in one country may increase costs of doing business and therefore drive firms to seek low cost sources in emerging markets in other countries. This can reduce employment opportunitiesn one country and increase them in another, further accelerating the pace of globalization. The second major question in the paper is what impact these drivers of interdependencies have had on the core conceptual models of organizational buying behavior. Consider the three enduring conceptual models developed in the Industrial Buying and Creative Marketing and Organizational Buying Behavior books: the organizational buying process, the buying center, and the buying situation. A review of these core models of organizational buying behavior, as originally conceptualized, shows they are still valid and not likely to change with the increasingly intense drivers of interdependency among organizations. What will change however is the way in which buyers and sellers interact under conditions of interdependency. For example, increased interdependencies can lead to increased opportunities for collaboration as well as conflict between buying and selling organizations, thereby changing aspects of the buying process. In addition, the importance of communication processes between and among organizations will increase as the role of trust becomes an important criterion for a successful buying relationship. The third question in the paper explored consequences and implications of these interdependencies on organizational buying behavior for practice and research. The following are considered in the paper: the need to increase understanding of network influences on organizational buying behavior, the need to increase understanding of the role of trust and value among organizational participants, the need to improve understanding of how to manage organizational buying in networked environments, the need to increase understanding of customer needs in the value network, and the need to increase understanding of the impact of emerging new business models on organizational buying behavior. In many ways, these needs deriving from increased organizational interdependencies are an extension of the conceptual tradition in organizational buying behavior. In 1977, Nicosia and Wind suggested a focus on inter-organizational over intra-organizational perspectives, a trend that has received considerable momentum since the 1990's. Likewise for managers to survive in an increasingly interdependent world, they will need to better understand the complexities of how organizations relate to one another. The transition from an inter-organizational to an interdependent perspective has begun, and must continue so as to develop an improved understanding of these important relationships. A shift to such an interdependent network perspective may require many academicians and practitioners to fundamentally challenge and change the mental models underlying their business and organizational buying behavior models. The focus can no longer be only on the dyadic relations of the buying organization and the selling organization but should involve all the related members of the network, including the network of customers, developers, and other suppliers and intermediaries. Consider for example the numerous partner networks initiated by SAP which involves over 9000 companies and over a million participants. This evolving, complex, and uncertain reality of interdependencies and dynamic networks requires reconsideration of how purchase decisions are made; as a result they should be the focus of the next phase of research and theory building among academics and the focus of practical models and experiments undertaken by practitioners. The hope is that such research will take place, not in the isolation of the ivory tower, nor in the confines of the business world, but rather, by increased collaboration of academics and practitioners. In conclusion, the consideration of increased interdependence among organizations revealed the continued relevance of the fundamental models of organizational buying behavior. However to increase the value of these models in an interdependent world, academics and practitioners should improve their understanding of (1) network influences, (2) how to better manage these influences, (3) the role of trust and value among organizational participants, (4) the evolution of customer needs in the value network, and (5) the impact of emerging new business models on organizational buying behavior. To accomplish this, greater collaboration between industry and academia is needed to advance our understanding of organizational buying behavior in an interdependent world.

Measuring Consumer-Brand Relationship Quality (소비자-브랜드 관계 품질 측정에 관한 연구)

  • Kang, Myung-Soo;Kim, Byoung-Jai;Shin, Jong-Chil
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.111-131
    • /
    • 2007
  • As a brand becomes a core asset in creating a corporation's value, brand marketing has become one of core strategies that corporations pursue. Recently, for customer relationship management, possession and consumption of goods were centered on brand for the management. Thus, management related to this matter was developed. The main reason of the increased interest on the relationship between the brand and the consumer is due to acquisition of individual consumers and development of relationship with those consumers. Along with the development of relationship, a corporation is able to establish long-term relationships. This has become a competitive advantage for the corporation. All of these processes became the strategic assets of corporations. The importance and the increase of interest of a brand have also become a big issue academically. Brand equity, brand extension, brand identity, brand relationship, and brand community are the results derived from the interest of a brand. More specifically, in marketing, the study of brands has been led to the study of factors related to building of powerful brands and the process of building the brand. Recently, studies concentrated primarily on the consumer-brand relationship. The reason is that brand loyalty can not explain the dynamic quality aspects of loyalty, the consumer-brand relationship building process, and especially interactions between the brands and the consumers. In the studies of consumer-brand relationship, a brand is not just limited to possession or consumption objectives, but rather conceptualized as partners. Most of the studies from the past concentrated on the results of qualitative analysis of consumer-brand relationship to show the depth and width of the performance of consumer-brand relationship. Studies in Korea have been the same. Recently, studies of consumer-brand relationship started to concentrate on quantitative analysis rather than qualitative analysis or even go further with quantitative analysis to show effecting factors of consumer-brand relationship. Studies of new quantitative approaches show the possibilities of using the results as a new concept of viewing consumer-brand relationship and possibilities of applying these new concepts on marketing. Studies of consumer-brand relationship with quantitative approach already exist, but none of them include sub-dimensions of consumer-brand relationship, which presents theoretical proofs for measurement. In other words, most studies add up or average out the sub-dimensions of consumer-brand relationship. However, to do these kind of studies, precondition of sub-dimensions being in identical constructs is necessary. Therefore, most of the studies from the past do not meet conditions of sub-dimensions being as one dimension construct. From this, we question the validity of past studies and their limits. The main purpose of this paper is to overcome the limits shown from the past studies by practical use of previous studies on sub-dimensions in a one-dimensional construct (Naver & Slater, 1990; Cronin & Taylor, 1992; Chang & Chen, 1998). In this study, two arbitrary groups were classified to evaluate reliability of the measurements and reliability analyses were pursued on each group. For convergent validity, correlations, Cronbach's, one-factor solution exploratory analysis were used. For discriminant validity correlation of consumer-brand relationship was compared with that of an involvement, which is a similar concept with consumer-based relationship. It also indicated dependent correlations by Cohen and Cohen (1975, p.35) and results showed that it was different constructs from 6 sub-dimensions of consumer-brand relationship. Through the results of studies mentioned above, we were able to finalize that sub-dimensions of consumer-brand relationship can viewed from one-dimensional constructs. This means that the one-dimensional construct of consumer-brand relationship can be viewed with reliability and validity. The result of this research is theoretically meaningful in that it assumes consumer-brand relationship in a one-dimensional construct and provides the basis of methodologies which are previously preformed. It is thought that this research also provides the possibility of new research on consumer-brand relationship in that it gives root to the fact that it is possible to manipulate one-dimensional constructs consisting of consumer-brand relationship. In the case of previous research on consumer-brand relationship, consumer-brand relationship is classified into several types on the basis of components consisting of consumer-brand relationship and a number of studies have been performed with priority given to the types. However, as we can possibly manipulate a one-dimensional construct through this research, it is expected that various studies which make the level or strength of consumer-brand relationship practical application of construct will be performed, and not research focused on separate types of consumer-brand relationship. Additionally, we have the theoretical basis of probability in which to manipulate the consumer-brand relationship with one-dimensional constructs. It is anticipated that studies using this construct, which is consumer-brand relationship, practical use of dependent variables, parameters, mediators, and so on, will be performed.

  • PDF

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.