• Title/Summary/Keyword: Global Navigation Satellite

Search Result 575, Processing Time 0.031 seconds

Optimal Satellite Constellation Design for Korean Navigation Satellite System (한국형 위성항법시스템을 위한 위성군집궤도 최적 설계)

  • Kim, Han Byeol;Kim, Heung Seob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • NSS (Navigation satellite system) provides the information for determining the position, velocity and time of users in real time using satellite-networking, and is classified into GNSS (Global NSS) and RNSS (Regional NSS). Although GNSS services for global users, the exactitude of provided information is dissatisfied with the degree required in modern systems such as unmanned system, autonomous navigation system for aircraft, ship and others, air-traffic control system. Especially, due to concern about the monopoly status of the countries operating it, some other countries have already considered establishing RNSS. The RNSS services for users within a specific area, however, it not only gives more precise information than those from GNSS, but also can be operated independently from the NSS of other countries. Thus, for Korean RNSS, this paper suggests the methodology to design the satellite constellation considering the regional features of Korean Peninsula. It intends to determine the orbits and the arrangement of navigation satellites for minimizing PDOP (Position dilution of precision). PGA (Parallel Genetic Algorithm) geared to solve this nonlinear optimization problem is proposed and STK (System tool kit) software is used for simulating their space flight. The PGA is composed of several GAs and iterates the process that they search the solution for a problem during the pre-specified generations, and then mutually exchange the superior solutions investigated by each GA. Numerical experiments were performed with increasing from four to seven satellites for Korean RNSS. When the RNSS was established by seven satellites, the time ratio that PDOP was measured to less than 5 (i.e. better than 'Good' level on the meaning of the PDOP value) was found to 94.3% and PDOP was always kept at 10 or less (i.e. better than 'Moderate' level).

Design of Electromagnetic Band Gap Structure for Global Navigation Satellite Service (Global-Navigation Satellite Service를 위한 Electromagnetic Band Gap 구조체 설계)

  • Chung, Ki-Hyun;Jang, Young-Jin;Yeo, Sung-Dae;Jung, Chang-Won;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In this paper, a mushroom typed electromagnetic band gap (EBG) structure to be inserted in the printed circuit board (PCB) inner layer in order to stabilize the PCB power line is proposed for global-navigation satellite service (GNSS). In designing the proposed EBG structure, the target stop-bandwidth was designed from 1.55GHz to 1.81GHz including GNSS and mobile communication-related frequency bandwidth. In this bandwidth, the insertion loss(S21) was observed below about -40dB. From the simulation results, it is expected that the stabilization of power delivery network (PDN) structure in the PCB circuit design should be improved and the effective correspondence to EMI will be helpful.

An Analysis of the Navigation Parameters of Japanese DGNSS-MSAS (일본의 DGNSS인 MSAS 항법파라미터 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1619-1625
    • /
    • 2017
  • Civil global navigation satellite system (GNSS) does not meet user performance requirements for specific PNT (Positioning, Navigation, and Time) applications. Therefore, various differential systems are used to augment GNSS for improving positioning accuracy and integrity. The MTSAT satellite augmentation system (MSAS) is the Japanese satellite based augmentation system. This paper is for analyzing the characteristics of Japanese MSAS in Korean peninsula. First of all, it was done for analyzing not only DGNSS navigation signal but also the navigation parameter through simulation and experimental tests. As a result of data analyses, the sufficient navigation satellites to determine 3-D position based on DGNSS are simultaneously available at MSAS monitering station and the southern region of Korean peninsula. It was verified that the carrier to noise signals are stable to maintain the reliable 3-D position and that the level of 2m (2drms) accuracy is very similar to the ordinary worldwide DGNSS as well.

Measurement Level Experimental Test Result of GNSS/IMU Sensors in Commercial Smartphones

  • Lee, Subin;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.273-284
    • /
    • 2020
  • The performance of Global Navigation Satellite System (GNSS) chipset and Inertial Measurement Unit (IMU) sensors embedded in smartphones for location-based services (LBS) is limited due to the economic reasons for their mass production. Therefore, it is necessary to efficiently process the output data of the smartphone's embedded sensors in order to derive the optimum navigation values and, as a previous step, output performance of smartphone embedded sensors needs to be verified. This paper analyzes the navigation performance of such devices by processing the raw measurements data output from smartphones. For this, up-to-dated versions of smartphones provided by Samsung (Galaxy s10e) and Xiaomi (Mi 8) are used in the test experiment to compare their performances and characteristics. The GNSS and IMU data are extracted and saved by using an open market application software (Geo++ RINEX Logger & Mobile MATLAB), and then analyzed in post-processing manner. For GNSS chipset, data is extracted from static environments and verified the position, Carrier-to-Noise (C/N0), Radio Frequency Interference (RFI) performance. For IMU sensor, the validity of navigation and various location-based-services is predicted by extracting, storing and analyzing data in static and dynamic environments.

Design and Implementation of Combined RF Receiver Front End for GPS/GLONASS (GPS/ GLONASS 통합 수신용 RF 전단부의 설계 및 제작)

  • 주재순;염경환;이상정
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.494-502
    • /
    • 2001
  • GPS(Global Positioning System) and GLONASS(GLObal Navigation Satellite System) are basic technologies providing the information of the position and the time, and they have various applications such as navigation, survey, control, and so on. However, each GPS and GLONASS has limited number of visible satellites, and, from the view of strategy, it is undesirable to be heavily dependent on only one system. Thus, GPS/GLONASS combined receiver became required to obtain more precise navigation and system stability. In this paper, the RF front end of GPS/GLONASS combined receiver was fabricated on 130$\times$80 $\textrm{mm}^2$ PCB(Printed Circuit Board), and its system application was shown finally one chip possibility of GLONASS receiver is studied.

  • PDF

Performance Analysis of Zonotope Shadow Matching Algorithm According to Various Urban Environments (다양한 도심 환경에 따른 ZSM 알고리즘의 성능 분석)

  • Sanghyun Kim;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • In urban areas, signals can be blocked and reflected by buildings, reducing the reliability of global navigation satellite systems (GNSS). To address this, the zonotope shadow matching (ZSM) algorithm has been proposed to estimate the set-valued receiver position by calculating the GNSS shadow based on the zonotope. However, the existing study only analyzed the performance of ZSM in dense urban areas where GNSS shadows occur frequently, and the performance analysis in various urban environments was insufficient. Therefore, in this paper, we analyzed the performance of the ZSM algorithm in four urban environments with different characteristics. The results showed that the receiver position estimation performance of ZSM was relatively poor in environments where buildings were not densely populated, and the performance of ZSM was shown to be effective in urban environments with narrow roads and tall buildings.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Single-Feed, Wideband, Circularly Polarized, Crossed Bowtie Dipole Antenna for Global Navigation Satellite Systems

  • Tran, Huy Hung;Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.299-305
    • /
    • 2014
  • A wideband circularly polarized (CP) antenna with a single feed is proposed for use in global navigation satellite systems. Its primary radiation elements are composed of two orthogonal bowtie dipoles, which are equipped with double-printed vacant-quarter rings to allow direct matching of the antenna to a single $50-{\Omega}$ coaxial line and to produce CP radiation. The crossed bowtie dipole is appropriately incorporated with a planar metallic reflector to produce the desired unidirectional radiation pattern as well as to achieve a wideband characteristic in terms of impedance matching and axial ratio (AR) bandwidths. The designed antenna was fabricated and measured. The prototype antenna with an overall 1.2-GHz frequency size of $0.48{\lambda}_o{\times}0.48{\lambda}_o{\times}0.25{\lambda}_o$ produced a measured ${\mid}S_{11}{\mid}$<-10 dB bandwidth of 1.05-1.79 GHz and a measured 3-dB AR bandwidth of 1.12-1.64 GHz. It also showed right-hand CP radiation with a small gain variation (${\pm}0.3dB$) and high radiation efficiency (>93%) over the operational bandwidth.

A Test Framework for Dynamically Supporting the Simulation Works of the Global Navigation Satellite Systems (위성항법 시뮬레이션 작업을 동적으로 지원하는 테스트 프레임워크)

  • Kuk, Seung-Hak;Kim, Hyeon-Soo;Lee, Sang-Uk
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.191-203
    • /
    • 2009
  • Simulation is the work that identifies the characteristics of some problem through the simulated experiments. During the experiments it is frequently required to change or replace the simulation models, algorithms, or input/output data. Especially, in the case of the simulation works performed by replacing algorithms, if a replaceable component that implements a specific algorithm is not correct with respect to its functionality it is very difficult to carry out the simulation works successfully. In this paper, we suggest a test framework that verifies functional correctness of the replaceable component in the software-based GNSS (Global Navigation Satellite System) simulation environments. When a component is replaced, this framework enables us to properly execute the functional test for the component according to its context.

  • PDF

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF