• Title/Summary/Keyword: Global Navigation Satellite

Search Result 571, Processing Time 0.027 seconds

Characteristics of Multi-GNSS Involving Chinese Global Navigation Satellite System, Beidou-Compass

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.872-875
    • /
    • 2012
  • Recently, China officially declared to operate its satellite positioning system, Beidou so called Compass. The system is currently having 10 orbiting satellites which regionally cover from Australia to Russia in the north. Moreover, the system will be planed not only to launch 6 navigation satellites in its orbit in 2012 but also to complete the system with 35 satellites in 2020. The China satellite navigation system can affect to the current circumstance of global satellite navigation world in terms of navigation parameters. In this paper, we investigate characteristics of multi-integrated GNSS involving Beidu-Compass system and discuss general issues involving visibility and GDOP.

  • PDF

GNSS: Resuscitated GLONASS, GPS Modernization, Galileo, and Beyond

  • Liu, Tony
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.27-31
    • /
    • 2006
  • With the fast developing pace, the Galileo system is entering the navigation stage with high profile. At the same time, U.S. is accelerating his GPS modernization schedule, and Russian also begins to resuscitate their GLONASS. Moreover, Chinese Beidou system has also joined the satellite navigation family with low profile already. And of course Japanese QZSS even moves forward. Along with the bitter competition in technology, finance, market and even military affairs, all these systems will firmly benefit each other and massively extend the role of civil satellite navigation industry in the future. The Global Navigation Satellite Systems (GNSS) would be almost certain to include above major satellite navigation systems. Thus how to utilize the navigation satellite resource for world peace and promote the progress of mankind should be the key issue of this century.

  • PDF

A study on the navigation message contents of the future Korean navigation satellite (미래 한국형 항법위성을 위한 위성항법메세지에 대한 연구)

  • Jo, Jung-Hyun;Lee, Woo-Kyoung;Choe, Nam-Mi;Baek, Jeong-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.108-115
    • /
    • 2012
  • Many studies relating the satellite navigation has been done by a relatively small research community in Korea. Most of domestic research has been focused on the application of the satellite navigation technology, but recently the topics of the next generation satellite navigation system are emphasized for its importance. Even opinions suggesting a future Korea's own satellite navigation system are not that uncommon. Due to the geographic, economic, and technological reasons, it is not widely discussed yet. However, a development technical roadmap regarding the Korea's own navigation satellite was established on the Korea Space Development Plan in general term. Currently four global navigation satellite systems are operating or being deployed. Several regional navigation satellite systems are in planning and development phase. Particularly in Asia, China has launched several satellites to complete their own global navigation satellite system, COMPASS until 2020. Japan launched one satellite and has planned to launch rest of set until 2013. It is proper time to develop Korea's own navigation satellite system to acquire the domestic space development technology and the security of navigational infrastructure. In this study, the validity or the feasibility of the Korea's own satellite navigation system is not discussed; rather the possibility and suitability of the additional information to the current operational navigation message is main target. For the first payload of the future Korea's satellite navigation satellite, a regional augmented system is more likely. This study also is focused on that aspect.

Alternative Positioning, Navigation, and Timing Applicable to Domestic PBN Implementation (국내 PBN 이행을 위한 대안 항법 적용 방안)

  • Kim, Mu-Geun;Kang, Ja-Young;Chang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Republic of Korea has established its performance-based navigation (PBN) implementation plan in 2010 for ensuring a smooth transition to PBN operations and relevant new flight procedures are being developed in accordance with the roadmap. Various Navigation aids (NAVAIDs) like global navigation satellite systems (GNSS), distance measuring equipment (DME), VHF omnidirectional range (VOR), inertial navigation system (INS) are used to support PBN procedures. Among them, GNSS would play a central role in PBN implementation. However, vulnerability of satellite navigation signals to artificial and natural interferences has been discovered and various alternative positioning, navigation and timing (APNT) technologies are under development in many countries. In this paper, we study whether continuous PBN operations can be achievable without GNSS signals. As a result, it shows that some of the domestic airports require the construction of APNT in the approach area.

Monitoring of the Jamming Environment in the GNSS L5 Band in Korea Region

  • Lee, Hak-beom;Song, Young-Jin;Park, Dong-Hyuk;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.353-361
    • /
    • 2021
  • This paper presents the jamming effect on the L5 band of Global Navigation Satellite System (GNSS) by analyzing real data collected via measurement campaigns in Korea region. In fact, the L5 band is one of the dedicated bands for various satellite navigation systems such as Global Positioning System (GPS), Galileo, BeiDou (BDS), and Quasi Zenith Satellite System (QZSS). And this band is also allocated along with various systems used for aeronautical radio navigation systems (ARNS). Among ARNS, the Distance Measuring Equipment (DME) and the Tactical Air Navigation System (TACAN) are systems that transmit and receive strong power pulse signals, which may cause unintentional jamming in the reception of GNSS signals. In this paper, signals in the main lobe of GPS L5, Galileo E5a, BDS B2a, and QZSS L5 are collected in Korean region to confirm whether the jamming effect exists in the band. And then, the pulse blanking technique, which is a simple signal processing technique capable of responding to pulsed jamming, is applied to analyze the jamming effect of DME/TACAN on the L5 band.

Survey of Signal Design for Global Navigation Satellite Systems (GNSS 신호 설계 동향조사)

  • Jong Hyun Jeon;Jeonghang Lee;Jeongwan Kang;Sunwoo Kim;Jung-Min Joo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

Analysis of Navigation Parameter and Performance Regarding the Russian GLONASS (러시아의 GLONASS 항법 파라미터 및 성능 분석)

  • Choi, Chang-Mook
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The Russian Global Navigation Satellite System (GLONASS) has been fully recovered since October 2011, and it has been significantly modernized. The recently launched GLONASS 752 was set for successful performance on October 16, 2017 and has resulted in 24-satellite constellation with 22 second-generation (GLONASS-M) satellites, and a third-generation (GLONASS-K) satellite. Therefore, this paper is focused on not only the identified navigation parameters, but also the performance analysis of the project based on its real data received from the studied satellites. It is verified that the 5-11 satellites are available for receiving navigation signal at this time. The obtained values of GDOP, PDOP, HDOP, VDOP, and TDOP are 2.790, 2.424, 1.169, 2.123, and 1.381, noted respectively in standard deviation. In fact, the level of positioning precision is about 1.4m in standard deviation. As a result, the positioning performances of the measured GLONASS and GPS are virtually identical. Therefore, we determine that the GLONASS is expected to be expanded for future applications.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.

Status and Technological Survey of Navigation Satellite Systems (위성항법시스템 위성체 운용 현황 및 기술 동향)

  • Yongrae Kim;Jeongrae Kim;Jong Yeoun Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 2024
  • This investigation primarily focuses on the generational characteristics of satellites utilized in the existing Global Navigation Satellite System (GNSS) and Regional Navigation Satellite System (RNSS), with a central emphasis on comparing the operational status of the latest generation satellites. Variations among satellite generations in physical attributes, energy consumption, and timekeeping are observed, enabling an exploration of the developmental trends over successive generations. Through a comparative analysis of the latest generation satellites, particularly in terms of performance, this study aims to furnish essential insights into the satellites employed within each system. Consequently, it will contribute to a foundational understanding of the past, present, and future GNSS satellites.