• 제목/요약/키워드: Global Buckling

검색결과 137건 처리시간 0.019초

제형파형강판 복부판의 탄성 연성전단좌굴 거동 (Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs)

  • 이종원;길흥배;이학은
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.707-715
    • /
    • 2005
  • 파형강판은 파형 형상으로 가공된 강판으로 높은 면내, 면외 방향의 강성을 갖으며, 건물, 교량 등으로 적용도가 높아지고 있다. 파형강판을 플레이트 거더나 프리스트레스트 박스거더교의 복부판으로 적용하면, 파형강판의 아코디언 효과에 의해 플랜지가 휨응력을 복부판이 전단응력을 대부분 지지하는 효율적인 구조를 얻을 수 있다. 전단응력을 받는 파형 강판은 전체좌굴, 국부좌굴 및 연성좌굴에 의해 내하력을 상실할 수 있다. 세 가지 좌굴 모드 중 연성 좌굴에 대한 명확한 분석은 거의 이루어지지 않았고 보수적인 강도 예측을 위한 강도 감소식이 사용되고 있다. 따라서 본 연구에서는 연성 좌굴 거동에 미치는 기하학적인 인자들의 영향을 파악하기 위하여 유한요소해석법을 이용한 좌굴해석이 수행되었다. 해석 결과는 연성 좌굴은 패널의 세장비와 북부판 높이 두께비의 복합변수에 의존하는 것으로 나타났다.

Research Advances on Tension Buckling Behaviour of Aerospace Structures: A Review

  • Datta, Prosun Kumar;Biswas, Sauvik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2011
  • This paper reviews most of the research done in the field of tensile buckling characteristics pertaining to aerospace structural elements with special attention to local buckling and parametric excitation due to periodic loading on plate and shell elements. The concepts of buckling in aerospace structures appear as the result of the application of a global compressive applied load or shear load. A less usual situation is the case, in which a global tensile stress creates buckling instability and the formation of complex spatial buckling pattern. In contrast to the case of a pure compression or shear load, here the applied macroscopic load has no compressive component and is thus globally stabilizing. The instability stems from a local compressive stress induced by the presence of a defect, such as a crack or a hole, due to partial or non-uniform applied load at the far end. This is referred to as tensile buckling. This paper discusses all aspects of tensile buckling, theoretical and experimental. Its far reaching applications causing local instability in aerospace structural components are discussed. The important effects on dynamic stability behaviour under locally induced periodic compression have been identified and influences of various parameters are discussed. Experimental results on simple and combination resonance characteristics on plate structures due to tensile buckling effects are elaborated.

정현파형 주름강판의 전단좌굴특성 분석 (An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates)

  • 손수덕;유미나;이승재;강주원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.10-19
    • /
    • 2014
  • 파형강판은 제형, 정현형 등의 형상으로 얇은 강판을 주름지게 가공한 것으로 두꺼운 평판을 대신하여 사용하여도 높은 면외방향의 강성을 확보할 수 있다. 또한, 아코디언효과로 축방향 강성이 거의 없어 플레이트거더의 웨브에 적용할 경우 웨브가 전단력만을 부담하는 방법으로 쉽게 설계할 수 있다. 그러나 파형강판의 전단좌굴은 평판과는 달리 국부좌굴과 전체좌굴 외에도 이들의 연성에 의해서도 좌굴이 발생하는 매우 복잡한 특성이 있으며, 이러한 연성좌굴에 대한 원인과 특성의 규명은 정현형의 경우 제형보다 연구결과가 부족한 실정이다. 따라서 본 연구에서는 정현형 파형강판의 전단좌굴 특성과 연성좌굴이 발생하는 경향에 대해서 연구하였다. 전단좌굴강도를 계산하기 위해서는 유한요소프로그램을 이용하였고 해석결과를 정해와 비교하였다. 또한, 주름의 두께와 형상 파라메타에 따른 좌굴응력 변화의 특성과 좌굴모드형상의 변화를 분석하였으며, 이들의 결과를 이론식의 결과와 비교하여 좌굴양상의 변화시점에 대해서 분석하였다.

Cellular and corrugated cross-sectioned thin-walled steel bridge-piers/columns

  • Ucak, Alper;Tsopelas, Panos
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.355-374
    • /
    • 2006
  • Thin walled steel bridge-piers/columns are vulnerable to damage, when subjected to earthquake excitations. Local buckling, global buckling or interaction between local and global buckling usually is the cause of this damage, which results in significant strength reduction of the member. In this study new innovative design concepts, "thin-walled corrugated steel columns" and "thin-walled cellular steel columns" are presented, which allow the column to undergo large plastic deformations without significant strength reduction; hence dissipate energy under cyclic loading. It is shown that, compared with the conventional designs, circular and stiffened box sections, these new innovative concepts might results in cost-effective designs, with improved buckling and ductility properties. Using a finite element model, that takes the non-linear material properties into consideration, it is shown that the corrugations will act like longitudinal stiffeners that are supporting each other, thus improving the buckling behavior and allowing for reduction of the overall wall thickness of the column.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

직교이방성 등변앵글부재의 탄성좌굴 (Elastic Buckling Behavior of Orthotropic Equal-leg Angle Members)

  • 김정곤;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.54-59
    • /
    • 2001
  • This paper presents an analytical investigation pertaining to the elastic buckling behavior of pultruded fiber reinforced plastic equal-leg angle members under concentric axial compression. The elastic local and global buckling (flexural, torsional, and flexural-torsional) analyses are conducted, respectively, and the analytical results are compared with the existing experimental results. The differences were more than 10%, and the experimental results were higher than the analytical results.

  • PDF

층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향 (Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination)

  • 김효진;홍창선
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석 (Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members)

  • 강현구;나창순
    • 한국전산구조공학회논문집
    • /
    • 제27권2호
    • /
    • pp.79-86
    • /
    • 2014
  • 본 논문에서는 범용 유한요소프로그램 ANSYS와 ABAQUS를 이용하여 냉간성형강으로 조립한 조립기둥의 전체좌굴과 뒤틀림좌굴에 대한 비선형해석을 위한 모델링 기법을 소개한다. 냉간성형강의 경우 두께가 얇아서 국부좌굴 등 비선형거동을 보이기 때문에 좌굴에 대한 해석에 매우 섬세한 모델링이 필요하다. ANSYS의 내연적정적모델링에 의한 해석은 좌굴 극한점 부근에서 수렴의 문제를 발생하였지만, ABAQUS의 외연적동적모델링의 경우에는 좌굴 및 좌굴이후의 부재 거동에 대해서 안정적인 결과를 제공하였다. 또한 수치해석 결과는 좌굴실험을 통해 얻어진 축내력에 비해 높은 내력을 보여주고 있다. 이는 실험과정에서 발생하는 편심에 의한 영향으로서 수치해석에 의한 좌굴내력에 적정한 보정치의 적용이 필요하며 본 논문에서는 기존 실험데이터와의 비교를 통해 0.88의 값을 제시한다.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.