• 제목/요약/키워드: Global Buckling

검색결과 137건 처리시간 0.017초

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.

Ultimate strength performance of Northern sea going non-ice class commercial ships

  • Park, Dae Kyeom;Paik, Jeom Kee;Kim, Bong Ju;Seo, Jung Kwan;Li, Chen Guang;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.613-632
    • /
    • 2014
  • In the early design stage of ships, the two most important structural analyses are performed to identify the structural capacity and safety. The first step is called global strength analysis (longitudinal strength analysis or hull girder strength analysis) and the second step is local buckling analysis (stiffened panel strength analysis). This paper deals with the ultimate strength performance of Arctic Sea Route-going commercial ships considering the effect of low temperature. In this study, two types of structural analyses are performed in Arctic sea conditions. Three types of ship namely oil tanker, bulk carrier and container ship with four different sizes (in total 12 vessels) are tested in four low temperatures (-20, -40, -60 and $-800^{\circ}C$), which are based on the Arctic environment and room temperature ($20^{\circ}C$). The ultimate strength performance is analysed with ALPS/HULL progressive hull collapse analysis code for ship hulls, then ALPS/ULSAP supersize finite element method for stiffened panels. The obtained results are summarised in terms of temperature, vessel type, vessel size, loading type and other effects. The important insights and outcomes are documented.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

사인형 주름웨브보의 이산화 최적구조설계 (Discrete Optimum Design of Sinusoidal Corrugated Web Girder)

  • 손수덕;유미나;이승재
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.671-682
    • /
    • 2012
  • 박스형 거더나 박공형 철골조 프레임에서 주름웨브보의 사용은 최근 많이 늘어가고 있다. 그 이유는 얇은 주름웨브보를 사용함으로서 압연형강이나 용접을 이용한 조립보에 비해 중량을 크게 줄일 수 있으며, 박판의 좌굴은 주름이 막아줄 수 있기 때문이다. 자동생산기술의 향상으로 인해 주름웨브를 가진 단위 부재를 양산할 수 있게 되어 적용분야가 확장되고 있으며, 주름웨브보의 부재 제원을 고려한 최적설계의 구현이 필요하게 된다. 이를 위해 본 논문에서는 주름웨브보의 생산부재 데이터를 고려한 이산화 최적구조설계 프로그램을 개발하여 집중하중과 등분포하중을 받는 주름웨브 단순보에 대해 적용하였다. 최소중량을 목적함수로, 세장비, 응력 및 처짐을 제약조건으로 채택하고, 전역최소값을 탐색하기 위해서 유전자 알고리즘을 채택하였으며, 생산부재의 번호를 불연속설계변수로 이용하였다. 최종적으로 해석설계의 검증을 위해서 이산화 최적설계 결과를 연속일 때의 결과와 비교하였으며, 최적단면 특성에 대해 분석하였다.

경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가 (Performance Evaluation of Steel Moment Frame and Connection including Inclined Column)

  • 김용완;김태진;김종호
    • 한국전산구조공학회논문집
    • /
    • 제26권3호
    • /
    • pp.173-182
    • /
    • 2013
  • 최근 진행되고 있는 건축 프로젝트는 기존의 정형적인 구조계획에서 벗어나 점차 복합적이고 다양한 형태를 지향하고 있다. 이와 같은 새로운 건축 트렌드 속에서, 비정형 건축물의 구조 시스템을 효율적으로 현실화하여 골조의 직교성을 해체시키는 기술에 대한 연구의 필요성이 대두되고 있다. 비정형 건축물의 중요한 구조적 특징 중 하나로 경사기둥의 빈번한 적용을 들 수 있다. 경사기둥은 접합된 보에 추가적으로 모멘트와 축력을 전달하므로, 이러한 현상이 골조 및 보-기둥 접합부의 거동에 어떠한 영향을 미치는지를 실험 혹은 해석을 통해 검증할 필요가 있다. 그러나 수직기둥-보 접합부에 비하면 경사기둥-보 접합부에 대한 연구는 현재까지 충분한 연구가 이루어지지 않고 있는 실정이다. 따라서 본 연구에서는 비선형해석 및 유한요소해석을 사용하여 경사기둥을 포함한 보-기둥 접합부의 성능을 평가하였다. 경사기둥을 포함한 철골모멘트 골조의 비선형정적해석을 통하여 골조 전체의 거동을 분석하였고, 경사기둥-보 접합부 모델의 유한요소해석을 통해 좌굴거동 및 취성파단 잠재성을 검토하였다.