• 제목/요약/키워드: Global/Local Branch History

검색결과 3건 처리시간 0.015초

분기 정보의 추측적 사용과 효율적 복구 기법 (Branch Prediction with Speculative History and Its Effective Recovery Method)

  • 곽종욱
    • 정보처리학회논문지A
    • /
    • 제15A권4호
    • /
    • pp.217-226
    • /
    • 2008
  • 분기 명령어에 대한 예측 정확도는 시스템의 전체 성능 향상에 중대한 영향을 미친다. 분기 정보의 추측적 사용은 미완료 분기에 대한 히스토리 정보를 추측적으로 사용하여 분기 예측을 수행한다. 이러한 방식은 분기 명령어의 가장 최근 기록을 일관되게 사용할 수 있도록 도와주기 때문에 분기 예측의 정확도 향상에 크게 기여한다. 하지만 미완료 분기 히스토리는 올바르지 못한 정보일 수 있으며, 이런 경우 적절한 복구기법이 필요하다. 이를 위해 본 논문에서는 분기 정보의 추측적 사용에 대한 성능 향상의 정도를 살피고, 분기 정보의 추측적 사용에 대한 필요성을 제시한다. 아울러, 분기 정보의 추측적 사용으로 인해 요구되는 적절한 복구 기법을 제안한다. 제안된 기법은 전역 분기 히스토리를 사용하는 분기 예측기와 지역 분기 히스토리를 사용하는 분기 예측기에 각각 적용 될 수 있는 방식들이다. 모의실험을 통해 본 논문에서 제안된 방식의 성능을 분석한 결과, 본 논문에서 제안된 기법이 최대 5.64%의 성능향상을 제공하였다. 아울러 프로그램 수행의 정확성을 해치지 않으면서 기존의 연구와 비교하여 90% 이상의 하드웨어 요구량의 감소를 가져왔다.

Design of a G-Share Branch Predictor for EISC Processor

  • Kim, InSik;Jun, JaeYung;Na, Yeoul;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권5호
    • /
    • pp.366-370
    • /
    • 2015
  • This paper proposes a method for improving a branch predictor for the extendable instruction set computer (EISC) processor. The original EISC branch predictor has several shortcomings: a small branch target buffer, absence of a global history, a one-bit local branch history, and unsupported prediction of branches following LERI, which is a special instruction to extend an immediate value. We adopt a G-share branch predictor and eliminate the existing shortcomings. We verified the new branch predictor on a field-programmable gate array with the Dhrystone benchmark. The newly proposed EISC branch predictor also accomplishes higher branch prediction accuracy than a conventional branch predictor.

Optimization of Gaussian Mixture in CDHMM Training for Improved Speech Recognition

  • Lee, Seo-Gu;Kim, Sung-Gil;Kang, Sun-Mee;Ko, Han-Seok
    • 음성과학
    • /
    • 제5권1호
    • /
    • pp.7-21
    • /
    • 1999
  • This paper proposes an improved training procedure in speech recognition based on the continuous density of the Hidden Markov Model (CDHMM). Of the three parameters (initial state distribution probability, state transition probability, output probability density function (p.d.f.) of state) governing the CDHMM model, we focus on the third parameter and propose an efficient algorithm that determines the p.d.f. of each state. It is known that the resulting CDHMM model converges to a local maximum point of parameter estimation via the iterative Expectation Maximization procedure. Specifically, we propose two independent algorithms that can be embedded in the segmental K -means training procedure by replacing relevant key steps; the adaptation of the number of mixture Gaussian p.d.f. and the initialization using the CDHMM parameters previously estimated. The proposed adaptation algorithm searches for the optimal number of mixture Gaussian humps to ensure that the p.d.f. is consistently re-estimated, enabling the model to converge toward the global maximum point. By applying an appropriate threshold value, which measures the amount of collective changes of weighted variances, the optimized number of mixture Gaussian branch is determined. The initialization algorithm essentially exploits the CDHMM parameters previously estimated and uses them as the basis for the current initial segmentation subroutine. It captures the trend of previous training history whereas the uniform segmentation decimates it. The recognition performance of the proposed adaptation procedures along with the suggested initialization is verified to be always better than that of existing training procedure using fixed number of mixture Gaussian p.d.f.

  • PDF