• 제목/요약/키워드: Glioma cells

검색결과 213건 처리시간 0.026초

The Effect of Chrysanthemum morifolium L. Extract on Cultured Neuroglial Cells Damaged by Glucose Oxidase

  • Seo, Young-Mi;Park, Seung-Taeck;Rim, Yo-Sup;Chung, Ok-Bong;Jekal, Seung-Joo
    • 대한임상검사과학회지
    • /
    • 제43권2호
    • /
    • pp.75-81
    • /
    • 2011
  • To clarify the oxidative stress of reactive oxygen species (ROS) and the effect of Chrysanthemum morifolium L. (CM) flower extract on the cultured neuroglial cells (C6 glioma) damaged by ROS, cell adhesion effect was measured by colorimetric assay after cultured C6 glioma cells were treated with various concentrations of glucose oxidase (GO) for 5 hours. For the antioxidative effect of CM flower extract, cell adhesion activity (CAA), superoxide dismutase (SOD)-like activity and lactate dehydrogenase (LDH) activity were assessed against GO-induced cytotoxicity on same cultures. In this study, GO remarkably decreased CAA dose-dependently, and the $XTT_{90}$ and $XTT_{50}$ values were measured at 15 mU/mL and 50 mU/mL following the treatment of C6 glioma cells with 5~60 mU/mL of GO. The CM flower extract significantly increased cell adhesion activity damaged by GO-induced cytotoxicity, and it also showed the SOD-like activity and the decrease of LDH activity. From these results, it is suggested that GO was cytotoxic on cultured C6 glioma cells, and CM flower extract showed antioxidative effects as shown by the increased CAA, SOD-like activity and the decrease of LDH activity on GO-induced cytotoxicity on the same cultures.

  • PDF

Effect of Polygonati Sibirici Rhizoma on Cell Viability in Human Glioma Cells

  • Kim, Min-Soo;Jeong, Ji-Cheon
    • 대한한의학회지
    • /
    • 제29권1호
    • /
    • pp.95-105
    • /
    • 2008
  • Objectives : Although herbal medicines containing flavonoids have been reported to exert anti-tumor activities, it has not been explored whether Hwang-Jeong (Polygonati sibirici Rhizoma, PsR) exerts anti-tumor activity in human glioma. The present study was therefore undertaken to examine the effect of PsR on cell viability and to determine its underlying mechanism in A172 human glioma cells. Methods : Cell viability was estimated by MTT assay. Reactive oxygen species generation and mitochondrial membrane potential were measured by the fluorescence dyes. The phosphorylation of kinases was evaluated by western blot analysis and caspase activity was estimated using colorimetric assay kit. Results : PsR resulted in loss of cell viability in a dose- and time-dependent manner. PsR did not increase reactive oxygen species (ROS) generation and the PsR-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that PsR treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) without changes in p38 and Jun-NH2-terminal kinase (JNK). U0126, an inhibitor of ERK, increased the PsR-induced cell death, but inhibitors of p38 and JNK did not affect the cell death. PsR induced depolarization of mitochondrial membrane potential. Caspase activity was not stimulated by PsR and caspase inhibitors did not prevent the PsR-induced cell death. Conclusion : Taken together, these findings suggest that PsR results in human glioma cell death through caspaseindependent mechanisms involving down-regulation of ERK.

  • PDF

구진의 $H_2O_2$로 유발된 뇌신경세포 상해에 대한 보호 기전 연구 (A Study on the Protective Mechanism of Moxi-tar on Cytotoxicity Induced by $H_2O_2$ in $C_6-glioma$)

  • 안성훈;안영남;백대봉;송문영;김경식;손인철
    • Korean Journal of Acupuncture
    • /
    • 제22권2호
    • /
    • pp.43-56
    • /
    • 2005
  • Objective : This study was produced to examine the effects of moxibustion that had been played important role to traditional oriental medical treatment on disease. Recently, it was reported that moxi-tar which is generated in the process of moxibustion as burning combustibles decreased NO and iNOS generation in $C_6-glioma$ and RAW 264.7 cells in our lab. The purpose of this research was to investigate the protect reaction on cell injury induced by the $H_2O_2$ in $C_6-glioma$ cells. Methods : $C_6-glioma$ cells were cultured in RPMI 1640 with FBS 10% in $CO_2$ incubator. To study the protective effects of moxi-tar, we observed cell viability, DPPH activity, SOD activity, catalase activity and cell morphology after injury with $H_2O_2$. Results : Moxi-tar increased cell viability about twice as much as that of being injury by $H_2O_2$(moxi-tar $40\;{\mu}g/m{\ell}$, $H_2O_2\;500\;{\mu}\;M$). And the results of free radical scavenger activity ($80\;{\mu}g/\;m{\ell}\;:\;78.91\;{\pm}\; 4.4%$), SOD activity and catalase activity ($80\;{\mu}g/\;m{\ell}$: 21.6 unit/ mg protein) were increased by moxi- tar as dose-dependent manner. Conclusion: we concluded that the effects of moxibustion which is played important role in Oriental medicine, might be free radical scavenger effects induced by moxi-tar.

  • PDF

GDNF Enhances Hs683 Human Glioma Cell Migration: Possible Involvement of MAPKs

  • Song , Hyun;Chung, Dong-June;Choung, Pill-Hoon;Moon , A-Ree
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.326.2-327
    • /
    • 2002
  • Glial cell-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that enhances survival of midbrain doparminergic neuron. GDNF and its receptors are widely distributed in brain and are believed to be involved in the control of neuron survival and differentiation. In this study, we examined the effect of GDNF on proliferation and migration of Hs683 human glioma cells. GDNF markedly enhances proliferation and migration of Hs683 cells in a dose-dependent manner. (omitted)

  • PDF

Metallothinein 1E Enhances Glioma Invasion through Modulation Matrix Metalloproteinases-2 and 9 in U87MG Mouse Brain Tumor Model

  • Hur, Hyuk;Ryu, Hyang-Hwa;Li, Chun-Hao;Kim, In Young;Jang, Woo-Youl;Jung, Shin
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권6호
    • /
    • pp.551-558
    • /
    • 2016
  • Malignant glioma cells invading surrounding normal brain are inoperable and resistant to radio- and chemotherapy, and eventually lead to tumor regrowth. Identification of genes related to motility is important for understanding the molecular biological behavior of invasive gliomas. According to our previous studies, Metallothionein 1E (MT1E) was identified to enhance migration of human malignant glioma cells. The purpose of this study was to confirm that MT1E could modulate glioma invasion in vivo. Firstly we established 2 cell lines; MTS23, overexpressed by MT1E complementary DNA construct and pV12 as control. The expression of matrix metalloproteinases (MMP)-2, -9 and a disintegrin and metalloproteinase 17 were increased in MTS23 compared with pV12. Furthermore it was confirmed that MT1E could modulate MMPs secretion and translocation of NFkB p50 and B-cell lymphoma-3 through small interfering ribonucleic acid knocked U87MG cells. Then MTS23 and pV12 were injected into intracranial region of 5 week old male nude mouse. After 4 weeks, for brain tissues of these two groups, histological analysis, and immunohistochemical stain of MMP-2, 9 and Nestin were performed. As results, the group injected with MTS23 showed irregular margin and tumor cells infiltrating the surrounding normal brain, while that of pV12 (control) had round and clear margin. And regrowth of tumor cells in MTS23 group was observed in another site apart from tumor cell inoculation. MT1E could enhance tumor proliferation and invasion of malignant glioma through regulation of activation and expression of MMPs.

microRNA-214-mediated UBC9 expression in glioma

  • Zhao, Zhiqiang;Tan, Xiaochao;Zhao, Ani;Zhu, Liyuan;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.641-646
    • /
    • 2012
  • It has been reported that ubiquitin-conjugating enzyme 9 (Ubc9), the unique enzyme2 in the sumoylation pathway, is up-regulated in many cancers. However, the expression and regulation of UBC9 in glioma remains unknown. In this study, we found that Ubc9 was up-regulated in glioma tissues and cell lines compared to a normal control. UBC9 knockdown by small interfering RNA (siRNA) affected cell proliferation and apoptosis in T98G cells. Further experiments revealed that microRNA (miR)-214 directly targeted the 3' untranslated region (UTR) of UBC9 and that there was an inverse relationship between the expression levels of miR-214 and UBC9 protein in glioma tissues and cells. miR-214 overexpression suppressed the endogenous UBC9 protein and affected T98G cell proliferation. These findings suggest that miR-214 reduction facilitates UBC9 expression and is involved in the regulation of glioma cell proliferation.

IDH1 Overexpression Induced Chemotherapy Resistance and IDH1 Mutation Enhanced Chemotherapy Sensitivity in Glioma Cells in Vitro and in Vivo

  • Wang, Ju-Bo;Dong, Dan-Feng;Wang, Mao-De;Gao, Ke
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.427-432
    • /
    • 2014
  • Isocitrate dehydrogenase (IDH) is of great importance in cell metabolism and energy conversion. IDH mutation in glioma cells is reported to be associated with an increased overall survival. However, effects biological behavior of therapy of gliomas are unclear. Here, we investigated the influence of wild-type and mutated IDH genes on glioma cell biological behavior and response to chemotherapy. Relevant mechanisms were further explored. We designed our study on the background of the IDHR132H mutation. Stable cell lines were constructed by transfection. The CCK-8 method was used to assess cell proliferation, flow cytometry for the cell cycle and cell apoptosis, and the transwell method for cell invasion. Nude mouse models were employed to determine tumorigenesis and sensitivity to chemotherapy. Western blotting was used to detect relevant protein expression levels. We found that overexpression of wild IDH1 gene did not cause changes in the cell cycle, apoptosis and invasion ability. However, it resulted in chemotherapy resistance to a high dose of temozolomide (TMZ) in vivo and in vitro. The IDH1 mutation caused cell cycle arrest in G1 stage and a reduction of proliferation and invasion ability, while raising sensitivity to chemotherapy. This may provide an explanation for the better prognosis of IDH1 mutated glioma patients and the relative worse prognosis of their wild-type IDH1 counterparts. We also expect IDH1 mutations may be optimized as new targets to improve the prognosis of glioma patients.

REGULATION OF PROENKEPHALIN GENE EXPRESSION AND MET-ENKEPHALIN SECRETION IN BOVINE ADRENAL MEDULLARY CHROMAFFIN CELLS AND C6 RAT GLIOMA CELLS

  • Suh, Hong-Won
    • Toxicological Research
    • /
    • 제9권2호
    • /
    • pp.195-206
    • /
    • 1993
  • The expression of proenkephalin (proENK) mRNA and Met-enkephalin (ME) secretion in C6 rat glioma cells and bovine adrenal medullary chromaffin (BAMC) cells were elucidated in the present study. The levels of proENK mRNA and ME secreted into the media in BAMC cells were measured in the presence of cycloheximide and 12-tetrade-canoylphorbol-13-acetate (TPA). Cycloheximide (20 nM) abolished the induction of proENK mRNA expression, protein synthesis and ME secretion by TPA (1nM), indicating that de novo protein synthesis was necessary for proENK gene expression and ME secretion.

  • PDF

울금(鬱金)이 폐암(肺癌), 자궁암(子宮癌), 신경교종(神經膠腫) 및 전립선암(前立腺癌)에 대한 세포자살유도(細胞自殺誘導)에 미치는 영향(影響) (Induction of Apoptosis by Curcuma aromatica on Lung Cancer Cells(A549), Cervical Cancer Cells(HeLa), Glioma Cancer Cells(A172) and Prostate Cancer Cells(PC3))

  • 박상현;김진성;윤상협;류봉하
    • 대한한방내과학회지
    • /
    • 제27권2호
    • /
    • pp.379-393
    • /
    • 2006
  • Objectives: We are aimed to identify anti-tumor effects of Curcuma aromatics on some kinds of cancer cells through molecular biologic methods. Materials & Methods: We used 4 kinds of cancer cell lines such as lung cancer cells(AS49), cervical cancer cells(HeLa), glioma cancer cells(A172) and prostate cancer cells(PC3). We treated the boiled extract of Curcuma aromatica $5{\mu}g,\;10{\mu}g$ to cultural media(ml) for 24 hours. We measured the cytotoxicitv on 4 kinds of cancer cells through tryphan blue exclusion test and the suppressive effect on viability of 4 kinds of cancer cells via MTT assay. We measured change of mitochondria membrane potential via flow cytometry. The quantitative RT-PCR was used to examine the effect on the revelation of Bcl-2 and Bax which are genes related to apoptosis. We examined the effect on the revelation of Bcl-2 Protein and Bar protein by western blot analysis. Results : In the experiment of tryphan blue exclusion test, the extract of Curcuma aromatica showed more significant killing effect on AS49, HeLa than the control group with density dependent manner, which was statistically significant. In the experiment of MTT assay the extract of Curcuma aromatica showed more suppressive effect on viability of A549, HeLa than the control group with density dependent manner, which was statistically significant. Curcuma aromatica induced apoptosis by decreasing the membrane potential of mitochondria in A549, HeLa. In the experiment of the revelation of genes related to apoptosis, the revelation of Bcl-2 decreased and the revelation of Bax increased in A549, HeLa treated with Curcuma aromatica with dose dependent manner. In the experiment of the revelation of protein related to apoptosis, the protein levels of Bcl-2 decreased and the protein levels of Bax increased in AS49, HeLa treated with Curcuma aromatica with dose dependent manner. Conclusions: From this study, we can infer that Curcuma aromatica has anti-tumor effect on lung cancer cells and uterine carcinoma cells but not on glioma cells and prostate cancer cells.

  • PDF

Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1

  • Han, Wei;Wang, Lin;Yin, Bin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.233-238
    • /
    • 2014
  • Polypyrimidine tract-binding protein 1 (PTBP1) and its brain-specific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1.