• 제목/요약/키워드: Glioma cell

검색결과 200건 처리시간 0.023초

Effect of Cadmium on $C_6$ Glioma Cells in Culture

  • Son Young-Woo;Lee Kang-Chang
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.275-279
    • /
    • 2006
  • It is demonstrated that cadmium has cytotoxic effect on glial cells, oxygen radicals are involved in cadmium-induced cytotoxicity. However, the toxic mechanism of cadmium is left unknown so far. The purpose of this study was to examine the cytotoxicity of $CdCl_2$ on $C_6$ glioma cells. The cytotoxicy was measured by cell viability via XTT assay in $C_6$ glioma cells. Colorimetric assay such as XTT assay is regarded as a very sensitive screening method for the determination of the cell viability on a lots of chemicals. In this study, $CdCl_2$ decreased cell viability according to the dose- and time dependent manners after $C_6$ glioma cells were treated with various concentrations of $CdCl_2$ for 48 hours. $IC_{90}\;and\;IC_{50}$ values for XTT assay was determined at $5{\mu}M\;and\;55{\mu}M$ of $CdCl_2$, respectively. These results suggest that $CdCl_2$ has highly cytotoxic effect on $C_6$glioma cells by the decrease of cell viability.

  • PDF

Impact of calcineurin inhibitors on rat glioma cells viability

  • Seong, Jeong Hun;Park, Woo Yeong;Paek, Jin Hyuk;Park, Sung Bae;Han, Seungyeup;Mun, Kyo-Cheol;Jin, Kyubok
    • Journal of Yeungnam Medical Science
    • /
    • 제36권2호
    • /
    • pp.105-108
    • /
    • 2019
  • Background: Although kidney transplantation outcomes have improved dramatically after using calcineurin inhibitors (CNIs), CNI toxicity continues to be reported and the mechanism remains uncertain. Here, we investigated the neurotoxicity of CNIs by focusing on the viability of glioma cells. Methods: Glioma cells were treated with several concentrations of CNIs for 24 hours at $37^{\circ}C$ and their cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: Exposure to 0, 0.25, 0.5, 2.5, 5.0, and 10.0 mM concentrations respectively showed 100%, 64.3%, 61.3%, 68.1%, 62.4%, and 68.6% cell viability for cyclosporine and 100%, 38.6%, 40.8%, 43.7%, 37.8%, and 43.0% for tacrolimus. The direct toxic effect of tacrolimus on glioma cell viability was stronger than that of cyclosporine at the same concentration. Conclusion: CNIs can cause neurological side effects by directly exerting cytotoxic effects on brain cells. Therefore, we should carefully monitor the neurologic symptoms and level of CNIs in kidney transplant patients.

microRNA-214-mediated UBC9 expression in glioma

  • Zhao, Zhiqiang;Tan, Xiaochao;Zhao, Ani;Zhu, Liyuan;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.641-646
    • /
    • 2012
  • It has been reported that ubiquitin-conjugating enzyme 9 (Ubc9), the unique enzyme2 in the sumoylation pathway, is up-regulated in many cancers. However, the expression and regulation of UBC9 in glioma remains unknown. In this study, we found that Ubc9 was up-regulated in glioma tissues and cell lines compared to a normal control. UBC9 knockdown by small interfering RNA (siRNA) affected cell proliferation and apoptosis in T98G cells. Further experiments revealed that microRNA (miR)-214 directly targeted the 3' untranslated region (UTR) of UBC9 and that there was an inverse relationship between the expression levels of miR-214 and UBC9 protein in glioma tissues and cells. miR-214 overexpression suppressed the endogenous UBC9 protein and affected T98G cell proliferation. These findings suggest that miR-214 reduction facilitates UBC9 expression and is involved in the regulation of glioma cell proliferation.

Memantine Induces NMDAR1-Mediated Autophagic Cell Death in Malignant Glioma Cells

  • Yoon, Wan-Soo;Yeom, Mi-Young;Kang, Eun-Sun;Chung, Yong-An;Chung, Dong-Sup;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권2호
    • /
    • pp.130-137
    • /
    • 2017
  • Objective : Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. Methods : Glioma cell lines (T-98 G and U-251 MG) were used for this study. Results : The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. Conclusion : Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1.

Expression of microRNA-218 and its Clinicopathological and Prognostic Significance in Human Glioma Cases

  • Cheng, Mao-Wei;Wang, Ling-Ling;Hu, Gu-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1839-1843
    • /
    • 2015
  • Background: MicroRNAs are a class of noncoding RNAs which regulate multiple cellular processes during tumor development. The purpose of this report is to investigate the clinicopathological and prognostic significance of miR-218 in human gliomas. Materials and Methods: Quantitative RT-PCR (qRT-PCR) was conducted to detect the expression of miR-218 in primary normal human astrocytes, three glioma cell lines and 98 paired glioma and adjacent normal brain tissues.Associations of miR-218 with clinicopathological variables of glioma patients were statistically analyzed. Finally, a survival analysis was performed using the Kaplan-Meier method and Cox's proportional hazards model. Results: The expression level of miR-218 in primary normal human astrocytes was significantly higher than that in glioma cell lines (p<0.01). Also, the expression level of miR-218 in glioma tissues was significantly downregulated in comparison with that in the adjacent normal brain tissues (p<0.001). Statistical analyses demonstrated that low miR-218 expression was closely associated with advanced WHO grade (p=0.002) and low Karnofsky performance score (p=0.010) of glioma patients. Kaplan-Meier analysis with the log-rank test showed that patients with low-miR-218 expression had poorer disease-free survival and overall survival (p=0.0045 and 0.0124, respectively). Multivariate analysis revealed that miR-218 expression was independently associated with the disease-free survival (p=0.009) and overall survival (p=0.004) of glioma patients. Conclusions: Our results indicate that miR-218 is downregulated in gliomas and that its status might be a potential valuable biomarker for glioma patients.

UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro

  • Wu, Ting-Feng;Zhang, Wei;Su, Zuo-Peng;Chen, San-Song;Chen, Gui-Lin;Wei, Yong-Xin;Sun, Ting;Xie, Xue-Shun;Li, Bin;Zhou, You-Xin;Du, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5137-5142
    • /
    • 2012
  • UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down-regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.

곡기생(槲寄生)의 항염증 효능 및 암세포 이주저해에 미치는 영향 (The Effects of Gokgisaeng on Anti-inflammation and Rat C6 Glioma Cell Migration)

  • 김현영;장수영;정지천;신현철
    • 대한한방내과학회지
    • /
    • 제34권1호
    • /
    • pp.31-45
    • /
    • 2013
  • Objectives : Gokgisaeng (Korean mistletoe) is used for the treatment of inflammatory and cancer diseases in traditional Korean medicine and its major component lectins have been reported to induce nitric oxide (NO) in RAW 264.7 macrophages, and also induce apoptosis of various types of cancer cells, although its modulatory effects on cancer cell migration and macrophage activation is poorly understood. The aim of this study is to clarify molecular mechanisms of action responsible for the anti-inflammatory and antitumor migration potentials of Korean mistletoe extract (KME). Methods : We investigated the anti-inflammatory activity of KME on NO production and inducible nitric oxide synthase (iNOS) expression by lipopolysaccharide (LPS) in both RAW 264.7 macrophages and rat C6 glioma cells, and also evaluated inhibitory efficacy on glioma cell growth and migration. For assessment, XTT assay, nitrite assay, RT-PCR, scratch-wound and Boyden chamber assay, and western blot analysis were performed. Results : Previously reported, unlike the efficacy of Gokgisaeng lectin, KME inhibited NO production and iNOS expression, and suppressed pro-inflammatory mediators including IL-$1{\beta}$, IL-6, COX-2, iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, KME suppressed tumor cell growth and migration, and it also inhibited LPS-induced NO release and iNOS activation by down-regulating expression of protein kinase C (PKC) and phosphorylation of ERK in C6 glioma cells. Conclusions : Our research findings provide evidence that KME can play a significant role in blocking pro-inflammatory reaction and malignant progression of tumors through the suppression of NO/iNOS by down-regulating of inflammatory signaling pathways, PKC/ERK.

MAGED4 Expression in Glioma and Upregulation in Glioma Cell Lines with 5-Aza-2'-Deoxycytidine Treatment

  • Zhang, Qing-Mei;Shen, Ning;Xie, Sha;Bi, Shui-Qing;Luo, Bin;Lin, Yong-Da;Fu, Jun;Zhou, Su-Fang;Luo, Guo-Rong;Xie, Xiao-Xun;Xiao, Shao-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3495-3501
    • /
    • 2014
  • Melanoma-associated antigen (MAGE) family genes have been considered as potentially promising targets for anticancer immunotherapy. MAGED4 was originally identified as a glioma-specific antigen. Current knowledge about MAGED4 expression in glioma is only based on mRNA analysis and MAGED4 protein expression has not been elucidated. In the present study, we investigated this point and found that MAGED4 mRNA and protein were absent or very lowly expressed in various normal tissues and glioma cell line SHG44, but overexpressed in glioma cell lines A172,U251,U87-MG as well as glioma tissues, with significant heterogeneity. Furthermore, MAGED4 protein expression was positively correlated with the glioma type and grade. We also found that the expression of MAGED4 inversely correlated with the overall methylation status of the MAGED4 promoter CpG island. Furthermore, when SHG44 and A172 with higher methylation were treated with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-AZA-CdR) reactivation of MAGED4 mRNA was mediated by significant demethylation in SHG44 instead of A172. However, 5-AZA-CdR treatment had no effect on MAGED4 protein in both SHG44 and A172 cells. In conclusion, MAGED4 is frequently and highly expressed in glioma and is partly regulated by DNA methylation. The results suggest that MAGED4 might be a promising target for glioma immunotherapy combined with 5-AZA-CdR to enhance its expression and eliminate intratumor heterogeneity.

Effect of Podophyllotoxin Conjugated Stearic Acid Grafted Chitosan Oligosaccharide Micelle on Human Glioma Cells

  • Wang, Geng Huan;Shen, He Ping;Huang, Xuan;Jiang, Xiao Hong;Jin, Cheng Sheng;Chu, Zheng Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.698-706
    • /
    • 2020
  • Objective : To study the physiochemical characteristics of podophyllotoxin (PPT) conjugated stearic acid grafted chitosan oligosaccharide micelle (PPT-CSO-SA), and evaluate the ability of the potential antineoplastic effects against glioma cells. Methods : PPT-CSO-SA was prepared by a dialysis method. The quality of PPT-CSO-SA including micellar size, zeta potential, drug encapsulation efficiency and drug release profiles was evaluated. Glioma cells were cultured and treated with PPT and PPT-CSO-SA. The ability of glioma cells to uptake PPT-CSO-SA was observed. The proliferation of glioma cells was determined by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The apoptosis and morphology of U251 cells were observed by 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) dye staining. Cell cycle analysis was performed by flow cytometry. The migration ability of U251 cells was determined by wound healing test. Results : PPT-CSO-SA had nano-level particle size and sustained release property. The encapsulation efficiency of drug reached a high level. The cellular uptake percentage of PPT in glioma cells was lower than that of PPT-CSO-SA (p<0.05). The inhibitory effect of PPT-CSO-SA on glioma cells proliferation was significantly stronger than that of PPT (p<0.05). The morphologic change of apoptosis cell such as shrinkage, karyorrhexis and karyopyknosis were observed. The percentage of U251 cells in G2/M phase increased significantly in the PPT-CSO-SA group compared with PPT group (p<0.05). Compared with the PPT group, the cell migration ability of the PPT-CSO-SA group was significantly inhibited after 12 and 24 hours (p<0.05). Conclusion : PPT-CSO-SA can effectively enhance the glioma cellular uptake of drugs, inhibit glioma cells proliferation and migration, induce G2/M phase arrest of them, and promote their apoptosis. It may be a promising anti-glioma nano-drug.

봉독(峰毒)이 Glioma Cell에 미치는 효과(效果) (Effects of Bee Venom on Glioma Cells)

  • 이주연;김인자;최방섭;김근우;구병수
    • 동의신경정신과학회지
    • /
    • 제19권3호
    • /
    • pp.117-127
    • /
    • 2008
  • Objective: Bee venom (BV) has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and relief of pain in Oriental medicine. The two main components of BV are melittin and phospholipase A2 (PLA2). Of these, melittin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti tumor effects. Several studies have established that the agents inducing apoptosis in target organs suppress tumorigenesis. As the other component, PLA2 has been reported to induce neurite outgrowth in PC12 cells. However, there was no report about proliferative effect of BV in neuronal cells. In order to examine the effect of BV on glioma cell, human glioma cell line, U87 was used. Methods: Analysis of proliferation was confirmed by MTT assay. BV increased cell number through dose and duration dependent manner and these effects are apparent at a concentration of 10 ug/ml. To observe which signaling molecules will be activated by BV, phosphorylation of Akt, MAPK, PYK2 or CREB were examined by Western blot analysis. To study the long term effect of BV in U87 cells, the image of cells treated with BV for 4 days were obtained. Results: The phosphorylation levels of PYK2 and Akt were increased at 5 min after addition of 10 ug/ml of BV and sustained to 2 hours. On the other hand, phosphorylation of MAPK and CREB were increased at 5 min, maximum at 10 min, and returned to 30 min. These imply that BV may activate two different signaling pathways, PYK2/Akt and MAPK/CREB. BV treated cells showed increased neurite number and length. Conclusion: These results propose that BV may induce differentiation as well as proliferation of U87 cells through the activation of PYK2/ Akt and MAPK/ CREB.

  • PDF