• Title/Summary/Keyword: Glazing performance

Search Result 103, Processing Time 0.031 seconds

Development and Evaluation of an Apparatus to Measure the Solar Heat Gain Coefficient of a Fenestration System According to KS L 9107 (KS L 9107에 의한 태양열 취득률(SHGC) 측정장치 개발 및 평가)

  • Kim, Tae-Jung;Choi, Hyun-Jung;Kang, Jae-Sick;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.512-521
    • /
    • 2014
  • Recently, multiple glazing units, frames, complex fenestration systems, and windows with shading devices have been developed to save cooling energy in buildings. However, very little work has been conducted on developing a direct experimental test method of the solar heat gain coefficient(SHGC) for new fenestration techniques. This study aims to develop and evaluate a test apparatus to measure the SHGC, according to the KS L 9107 test method. The performance of the solar simulator was class A, B, and A, for spectral match, non-uniformity, and instability irradiance, respectively. The differences between the measured and calculated SHGC values were found to range between 0.001 and 0.011, and for all test specimens they agreed within 4%. These results establish the validity of the test apparatus. This system is thus expected to be useful in assessing the energy performance for various types of fenestration.

Study on Estimate of Thermal Resistance of PVC Frame Window Due to Material Composition (PVC 창호의 구성에 따른 단열성능 예측에 관한 연구)

  • Sung, Uk-Joo;Lee, Jin-Sung;Cho, Soo;Jang, Cheol-Yong;Paek, Sang-Hun;Song, Kyoo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1075-1080
    • /
    • 2006
  • Purpose of this study is proposal of estimating method about window thermal performance that based on KS F 2278 'Test method of thermal resistance for windows and doors' due to material composition of PVC frame window. First step of this study is research of present state about material composition of PVC frame window. Second is selection of main effective elements about window thermal resistance. For example, composition of Glazing, Frame area ratio of total window area, frame width, opening type, area of heat transfer and so on. Third is multiple regression analysis about thermal performance of PVC frame window due to main effective elements. It produces equations of multiple regression analysis due to opening type. Case of sliding window is $Y=0.149+0.034X_g+0.248X_{far}$, 4track sliding is $Y=0.584+0.175X_g+1.355X_{far}-0.008X_{fw}$, Tilt & Turn window is $Y=-0.161+0.076X_g+0.576X_{far}+0.0008X_{fw}$.

  • PDF

Thermal Performance Assessment of Insulated door by experiment. (실측 실험을 통한 단열문의 열성능 평가)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.47-52
    • /
    • 2011
  • Currently, Exterior wall's U-value about building envelope is 0.36 W/$m^2K$(Central Region), but window's one is 2.1 W/$m^2K$ according to air gap of glazing, filling gas, coating and type of windows. The door"s one is 1.6~5.5 W/$m^2{\cdot}K$ depending on material and configuration of door. As such, energy loss per unit of door is considerably larger like windows. The door for the recognition was relatively low because energy loss through the door is relatively small compared to window area. In this paper, thermal performance was analyzed through simulation targeting the door which has thermal break that can improve the insulation performance and doesn't have one. As a results of simulations, case1 was calculated as the average of 1.63 w/m2k and case 2 was calculated as the average of 4.14 w/m2k. The thermal performance of door depends on the type and condition of insulations. As a results of final simulations, Case1 was calculated as 1.06 w/m2k and Case2 was calculated as 1.27 w/m2k. As a results of the experiments, thermal performance of case 1 was measured as 1.28 w/m2k. Error between experiments and simulations is considered problems encountered when creating the samples. The effect of door frame on the overall thermal performance is slight because it's a small proportion of the door frame.

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

Analytic Study on the Design Elements for Energy Conservative Green-Home Prototyping (에너지 저감형 그린홈 프로토타이핑을 위한 설계요소 분석 연구)

  • Kim, Jung-Eun;Chang, Seong-Ju;Ha, Mi-Kyoung;Sung, Hae-Yoen;Kim, Kyung-Wan
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • In respond to the global energy crisis and climate change, there have been many ongoing national efforts to develop a sustainable housing prototype followed by "2 million Green Home Project" in Korea. More than 50% of nation's population are currently living in apartment housing thus the country is seriously in need of developing green apartment prototype. In this research, we focused on energy-conservative green apartment design prototype that have both passive components and active systems explored in a systemic design approach. After selecting an existing basic apartment unit, we analyzed and compared statistical data with the simulated annual energy consumption to match these two data sets for validating simulation accuracy performed with TRNSYS package. We performed energy simulations with different passive design factors such as varied insulation thickness, window types and infiltration rates as well as the active design factors including boilers and lighting fixtures to analyze their impacts on the energy performance of the housing unit using TRNSYS software. As a result, we acquired significant energy reduction effect with explored design strategies but the life cycle cost analysis for the final design guidline would need to be performed. In this study, we focused on a systematic comparative energy analysis based on TRNSYS that can improve the design of a green apartment housing.

Daylighting Performance of Interior Space with Differentiated Glazing Systems (가변 유리투과체로 구성된 실 내공간의 채광성능평가)

  • Jeong, In-Young;Kim, Jeong-Tai
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.63-68
    • /
    • 2004
  • 본 연구는 우리나라 유리건축에서 적용되고 있는 유리투과체를 조사하여 투과율이 다른 4종류 즉, 투명유리, 색유리, 파스텔유리, 로이유리를 선정하여 복층유리로 제작하였다. 투과체에 따른 실내공간의 채광성능평가를 위하여 축소모형을 1/10으로 제작하였으며, 투과체의 구성을 일반형과 이중분할형으로 구성하여 기준실과 실험실에 설치하였다. 또한, 채광성능평가시 IEA모니터링 프로토콜을 적용하여 작업면, 벽면, 천정면에 대하여 조도를 외부조도와 동시에 측정하였고, 본 논문에서는 작업면에 대한 채광성능평가를 중심으로 분석하였다. 평가지표로서 주광조도비를 사용하였으며, 일반형과 이중분할형에 대한 가변 유리투과체를 변화시켰을 경우 투과율에 따른 실내공간의 채광성능을 평가하였다. 가변 유리투과체로 구성된 실내공간의 채광성능평가는 다음과 같이 분석되었다. 첫째, 실내공간에 일반형을 적용하여 서로 다른 투광성능을 가진 유리투과체가 적용된 경우 외부조도에 대한 내부조도 비율은 투과율이 증가할수록 일정하게 증가하는 것으로 나타났다. 이는 투과체가 갖는 투과성능의 영향으로 판단된다. 둘째, 일반형에 비해 이중분할형은 채광창으로 유입되는 채광학적 기여가 증가하여 실 전체의 조도를 증가시키며 특히, 실 중간부와 후면부의 경우 채광적 잠재력이 증대되어 실의 쾌적함과 시 환경적 질이 증대될 것으로 사료된다. 현재 유리건축물에 많이 적용되고 있는 저 투과체에 이중분할형을 적용할 경우 채광학적으로 많은 효과가 있을 것으로 기대된다.

  • PDF

A Study on Cooling of Piezoelectric Element of Multifunction Equipment for Vacuum Exhaust and Ultrasonic Joining (진공 배기 및 초음파 접합 복합기 진동자 냉각에 관한 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1511-1517
    • /
    • 2012
  • Vacuum chamber or vacuum tube for the exhaust process of vacuum glazing is presently used, where excessive time and expenses are required to make the whole vacuum chamber or tube vacuum. To solve this problem, multifunction equipment for vacuum exhaust and ultrasonic joining at atmospheric pressure has been developed, in which a piezoelectric vibrator experiences excessive temperature rise resulting in optimizing the cooling of the equipment. Therefore, in this study, cooling effects of natural convection and forced convection methods were identified by numerical analysis and experiments, and cooling performance of the multifunction equipment was optimized.

Comparative Analysis on the Mock-ups' Configuration and Monitoring Protocol System of Advanced Daylighting Systems for Daylighting Experiment - Focused on IEA SHC Task21- (첨단채광시스템 실험용 Mock-Up 모형의 형상 및 모니터링 프로토콜 시스템에 관한 비교분석 - IEA SHC Task21을 중심으로-)

  • Jeong, In-Young;Choi, Sang-Hyun;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • Innovative daylighting systems in buildings in various climatic zones around the world have been developed under the IEA SHC Task21. The performance assessment were obtained by monitoring the most systems using full-scale test model rooms or actual buildings under real sky conditions. This study aims to analyze the configuration and monitoring system of the nine Mock-up models of the IEA SHC Task21 comparatively. For the purpose, the geometry of the test rooms (length, width, height, window area, glazed area and occupied), reflectance of walls, floor and ceiling, transmittance of glazing (transmittance for hemispherical irradiation, normal irradiation and U-value) were compared. And equipment for measurement (manufacturer, range, calibration, maximum calibration error, cosine response error, fatigue error), and data acquisition system (manufacturer, type, number of differential analogue input channels, A/D converter resolution in bits, data acquisition software) were also analyzed comparatively. Some findings of these experimental methodology of standard monitoring have been proven to be a valuable one for future assessment of advanced daylighting systems in our country.