• Title/Summary/Keyword: Glaucoma Implant

Search Result 6, Processing Time 0.021 seconds

Modeling and Design of an Active Pressure Regulating Valve(Implant) (녹내장 치료용 능동형 압력조절밸브(Implant) 모델링 및 설계)

  • Bae, Byunghoon;Kim, Nakhoon;Lee, Yeon;Kee, Hongseok;Kim, Seoho;Park Kyihwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.805-815
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high IOP (Intra Ocular Pressure). High IOP is caused by the aqueous humor which is produced consistently but not drained due to malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are three methods to treat glaucoma-using medicines, surgical operation, and using implant device. The first and second methods are not long acting, so the use of implants is increasing in these days in order to drain out the aqueous humor compulsory. However, though conventional implants have a capability of pressure regulation, they cannot maintain IOPs desired for different patients, and too much aqueous humor are usually drained, to cause hypotony. To solve these problems, it is needed to develop a new implant which is capable of controling the IOP actively and copes with personal difference of patients. An active glaucoma implant consists of the valve actuator, pressure sensor, controller, and power supply. In this paper, firstly, we make an analysis of the operation of a conventional implant using a bond graph and show defects and limitations of the conventional valve analytically. Secondly, we design and analyze a valve actuator considering actuation principles, resistance elements, control methods, and energy sources focused on power saving problem. Finally, using simulations the possibility of the proposed valve actuator is investigated.

A New Valve Actuator for a Glaucoma Treatment by Using MEMS

  • Byunghoon Bae;Kim, Nakhoon;Park, Kyihwan;Hongseok Kee;Kim, Seonho;Lee, Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.6-103
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high IOP (Intra Ocular Pressure) in the eye. High IOP is caused by the aqueous humor which is produced consistently but not drained due to the malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are some methods to treat glaucoma, Among these, the use of implants is increasing in these days due to many problems in other methods. However, conventional implants are passive implants and have critical disadvantage. Therefore, it is needed to develop a new implant using MEMS structure which is capable of controlling the IOP actively and copes with personal difference of patients. An active glaucoma implant consists of the valve actuator, pressure sensor, controller, and power supply. In this paper the valve actuator is considered. We make experiments and simulations with the fabricated ...

  • PDF

Control of the Intraocular Pressure by Using the Micro Valve Actuator for a Glaucoma Implant

  • Byunghoon Bae;Park, Junhyun;Park, Kyihwan;Lee, Jonghyun;Lee, Yeon;Hongseok Kee;Kim, Seonho;Taeseok Sim;Kim, Yongkweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.74.6-74
    • /
    • 2002
  • $\textbullet$ A new implant capable of controlling IOP actively and coping with personal difference among patients $\textbullet$ The valve actuator of the active implant is proposed and fabricated. $\textbullet$ In vitro experiments are carried out extensively with and without a rabbit. $\textbullet$ The experiments are conducted by using the open and closed loop pressure control. $\textbullet$ The experiment with the rabbit is similar as a in vivo experiment, $\textbullet$ since the compliance and the aqueous humor of the rabbit's eye are included. $\textbullet$ The experimental results verify the possibility of the valve actuator for a glaucoma implant.

  • PDF

Fabrication and Performance Evaluation of the Valve Actuator for Glaucoma Implant (녹내장 임플랜트용 밸브 액추에이터의 제작 및 성능 평가)

  • Bae, Byung-Hoon;Kim, Nak-Hoon;Park, Kyi-Hwan;Lee, Sang-Ho;Sim, Tae-Seok;Kim, Yong-Kweon;Lee, Yeon;Kee, Hong-Seok;Kim, Seon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1875-1877
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high lOP (Intra Ocular Pressure). High lOP is caused by the aqueous humor which is produced consistently but not drained due to malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are some methods to treat glaucoma, Among these, the use of implants is increasing in these days due to many problems In other methods. However, conventional implants are passive implants and have critical disadvantage. Therefore, it is needed to develop an active implant which is composed of a valve actuator, pressure sensor, controller, and power supply. In this paper, we make experiment with the fabricated valve actuator in In-vitro experiment, and estimate the in-vivo result using the experimental result and investigate the possibility of the fabricated valve.

  • PDF

Development of Inductive and Capacitive Type Intraocular Pressure (IOP) Sensor to Improve Sensitivity and Minimize Size (민감도 향상과 센서 소형화를 위한 자기 및 용량형 안압센서의 개발)

  • Jang, Cheol In;Shin, Kyeong-Sik;Yun, Kwang-Seok;Kim, Yong Woo;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.409-415
    • /
    • 2014
  • We had presented an inductive type intraocular pressure sensor (L-sensor) in previous work. The distance between a micro coil and a ferrite on the membrane was modulated by pressure, and as a result the inductance and resonant frequency were changed. However, L-sensor has some problems to implant in eyes. First problem is low sensitivity. When L-sensor was implanted in rabbit's eyes, resonant frequency of L-sensor was very hard to detect. Second problem is biocompatibility. Size of L-sensor is $6{\times}7{\times}1.2mm$. When L-sensor was implanted in the eyes, it caused the inflammation. Therefore, this study suggests an inductive and capacitive type IOP sensor (LCsensor). The sensitivity of the LC-sensor 27.3 kHz/mmHg under 60mmHg. It is much larger than 14 kHz/mmHg of the L-sensor. And the size of LC-sensor is 47% smaller than L-sensor. After 2 weeks from the implantation of LC-sensor into rabbit eyes, we measured the changes of resonant frequency of LC-sensor according to increased IOP by Balanced Salt Solution (BSS) injection. As a result, the sensitivity of LC-sensor in in vivo test is 25 kHz/mmHg. That is similar to the sensitivity of in vitro test.

The Merits of Mannitol in the Repair of Orbital Blowout Fracture

  • Shin, Kyung Jin;Lee, Dong Geun;Park, Hyun Min;Choi, Mi Young;Bae, Jin Ho;Lee, Eui Tae
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.721-727
    • /
    • 2013
  • Background One of the main concerns in orbital blowout fracture repair is a narrow operation field, due mainly to the innate complex three dimensions of the orbit; however, a deep location and extensive area of the fracture and soft tissue edema can also cause concern. Swelling of the orbital contents progresses as the operation continues. Mannitol has been used empirically in glaucoma, cerebral hemorrhage, and orbital compartment syndrome for decompression. The authors adopted mannitol for the control of intraorbital edema and pressure in orbital blowout fracture repair. Methods This prospective study included 108 consecutive patients who were treated for a pure blowout fracture from January 2007 to October 2012. For group I, mannitol was administered during the operation. Under general anesthesia, all patients underwent surgery by open reduction and insertion of an absorbable mesh implant. The authors compared postoperative complications, the reoperation rate, operation time, and surgical field improvement between the two groups. Results In patients who received intraoperative administration of mannitol, the reoperation rate and operation time were decreased; however, the difference was not statistically significant. The total postoperative complication rates did not differ. Panel assessment for the intraoperative surgical field video recordings showed significantly improved vision in group I. Conclusions For six years, mannitol proved itself an effective, reliable, and safe adjunctive drug in the repair of orbital blowout fractures. With its rapid onset and short duration of action, mannitol could be one of the best methods for obtaining a wider surgical field in blowout fracture defects.