• Title/Summary/Keyword: Glass transmittance

Search Result 710, Processing Time 0.025 seconds

Optical Properties of Soda-lime Color Glass Fabricated by Using Refused Coal Ore (석탄폐석을 이용한 소다라임계 컬러유리의 광학적 특성)

  • Lim, Tae-Young;Jeong, Sang-Su;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.524-534
    • /
    • 2010
  • Glass was fabricated using refused coal ore obtained from the Dogye coal mine in Samcheok. We additionally used soda ash and calcium carbonate to make a glass with the chemical composition of soda-lime glass, and we also used white, brown, and green glass cullet to make various kinds of colored glass. Transparent glass was fabricated by melting batch materials including refused coal ore at $1550^{\circ}C$ for 1 hr in an electrical furnace. The light transmittance and color chromaticity were measured by a UV/VIS/NIR spectrometer. Transparent glass with a light transmittance of over 80% was fabricated using normal refused coal ore and white glass cullet. Various kinds of colored glass with a light transmittance of 30-80% were fabricated using refused coal ore and brown or green glass cullet. The light transmittance of the mixed color glass samples, fabricated using normal refused coal ore and brown glass cullet and green glass cullet, indicated 30-47%, a relatively low value, in the condition of a cullet ratio of 20-50%. The characteristics of the color chromaticity of the glass samples were indicated in a chromaticity diagram by x-coordinates, y-coordinates, Y (lightness). The values of x-coordinates and y-coordinates were moved with a regular directional property according to the kind and amount of glass cullet. Therefore, we concluded that refused coal ore can be used for raw materials of color glass products like art glass and glass tile.

Improvement of Transmittance and Surface Integrity of Glass Mold for light-hardening polymer Using MR Polishing (HR polishing에 의한 광경화성수지 성형용 글래스 몰드의 투과율 및 표면품위 향상)

  • Lee, J.W.;Kim, D.W.;Cho, M.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.78-83
    • /
    • 2009
  • In general, Light-hardening polymer was used UV nanoimprint technology. A light-hardening polymer was had the problem of poor hardness, durability. In order to overcome the problem of polymer, inter change optical glass. However glass is very manufacture and a lowering of standars transmittance. In order to glass recover was necessary polishing process. The process is magnetorheological fluids polishing. MR polishing has been developed as a new precision finishing technique to obtain a fine surface. Hence, Magnetorheological fluids has been used for micro polishing to get micro parts. This polishing process guarantees high polishing quality by controlling the fluid density electrically. The applied material in experiments is fused silica glass. Fused silica glass is widely used in the optical field because of high degree of purity. For MR polishing experiments, MR fluid was composed with DI-water, carbonyl iron and nano slurry ceria. The wheel speed and electric current were chosen as the variables for analyzing the characteristics of MR polishing process. Outstanding surface roughness of Ra=1.58nm was obtained on the fused silica glass specimen. And originally glass transmittance was recover on the fused silica glass.

  • PDF

The Study on Optical Properties by Adding $La_2O_3$ in Multicomponent Glass Fiber (다성분계 Glass Fiber의 $La_2O_3$ 첨가에 따른 광학적 특성에 관한 연구)

  • 김용호;강원호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-23
    • /
    • 1994
  • By adding La₂O₃ to optical multicomponent glass composition, after making mother glass and core fiber that enable to enlarge the infrared transmittance region, then surveyed the optical properties. Through thermal analysis of the glass abstained by melt-quenching after selecting stable basic composition on devitrification and replace SiO₂ by 4-12wt% La₂O₃. As La₂O₃ increases up to l2wt% transition temperature, refractive index, density, deformation temperature increased, whereas thermal expansion coefficient decreased. As a result of inspectig transmittance in UV/VIS/IR region, visable region indicated the decrease of transmittance by increasing the La₂O₃ and transmittance region was enlarged by increasing the La₂O₃ in IR region. Also, fabricate core fiber at 820℃ and severy the optical loss we could fact that La₂O₃ composition added 12wt% showed the minimum optical loss.

Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application (PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

A Comparative Study of Two Different SnO2:F-coated Glass Substrates for CdTe Solar Cells

  • Cha, Eun Seok;Ko, Young Min;Choi, Yong Woo;Park, Gyu Chan;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Two different fluorine-doped tin oxide (FTO)-coated glass substrates were investigated to find better suitability for CdTe solar cells. Substrate A consisted of FTO (300 nm)/$SiO_2$ (24 nm)/intrinsic $SnO_2$ (30 nm)/borosilicate glass (2.2 mm), and substrate B consisted of FTO (700 nm)/intrinsic $SnO_2$ (30nm)/borosilicate glass (1.8 mm). The overall thickness of the FTO/glass substrates was about 2.5 mm. The total light transmittance of substrate B was much higher than that of substrate A throughout the whole spectral region, even though the thickness of the FTO in substrate B was twice larger than that of the FTO in the substrate A. The short-circuit current greatly increased in substrate B and the external quantum efficiency (EQE) increased over the whole wavelength range. This study shows that the diffuse optical transmittance played a key role in the large EQE value in the blue wavelength region, and the direct transmittance played a key role in the large EQE value in the red wavelength region. The higher transmittance is due to the rough surface generated by the thicker FTO on glass. The conversion efficiency of the CdTe solar cell increased from 12.4 to 15.1% in combination of rough FTO substrate and Cu solution back contact.

Preparation and Characterization of Alumina Thin Film by Sol-Gel Method (III) Preparation of Anti-Reflective Coating Glass (졸겔법에 의한 알루미나 박막의 제조 및 특성 (III) 저반사 코팅유리의 제조)

  • 이재호;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.57-62
    • /
    • 1995
  • The coating condition of reproducible anti-reflective coating film and the light transmittance characteristics of the prepared anti-reflective coating glass were investigated as a study for the preparation of single-layer anti-reflective coating glasss. In case of coating with the sol in which the solvent was substituted with the ethanol with the addition of 0.1 mol HNO3, the coated glass showed the minimum value of the refractive index of 1.464, light transmittance of 94.2% at 550nm standard wavelength which is 3.2% higher than that of the parent glass, and the reflectance in the entire wave range of visible light. The refractive index represented its minimum at the sol concentration of 1.0 mol per 100mols of water and the higher the sol concentration, the higher the refractive index, resulting in the decrease of the light transmitance. The production condition of the reproducible anti-reflective coating on glass with the maximum transmittance of 94.2% was 4cm/min of withdrawal speed, 40$0^{\circ}C$ and 1 hour of heat treatment temperature and time, resulting in the film thickness of 94nm.

  • PDF

The Study on Optical Properties by Adding La$_2$O$_3$ in Multicomponent Glass Fiber (다성분계 Glass Fiber의 La$_2$O$_3$첨가에 따른 광학적 특성에 관한 연구)

  • 김용호;강원호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1985.01a
    • /
    • pp.21-23
    • /
    • 1985
  • By adding La$_2$O$_3$ to optical multicomponent glass composition, after making mother glass and core fiber that enable to enlarge the infrared transmittance region, then surveyed the optical properties. Through thermal analysis of the glass abstained by melt-quenching after selecting stable basic composition on devitrification and replace SiO$_2$ by 4-12wt% La$_2$O$_3$. As La$_2$O$_3$ increases up to l2wt% transition temperature, refractive index, density, deformation temperature increased, whereas thermal expansion coefficient decreased. As a result of inspectig transmittance in UV/VIS/IR region, visable region indicated the decrease of transmittance by increasing the La$_2$O$_3$ and transmittance region was enlarged by increasing the La$_2$O$_3$ in IR region. Also, fabricate core fiber at 820$^{\circ}C$ and severy the optical loss we could fact that La$_2$O$_3$ composition added 12wt% showed the minimum optical loss.

Controlled Crystallization and its Effects on Some Properties of Ge-Se-Te Chalcogenide Glass (Ge-Se-Te계 Chalcogenide 유리의 결정화 및 결정화가 물성에 미치는 영향)

  • 송순모;최세영;이용근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.855-862
    • /
    • 1996
  • The nucleation and the crystal growth rates of Ge-Se-Te chalcogenide glass by two step heat-treatment and its effect on the mechanical optical properties and water-resistance were determined. The maximum nuclea-tion and crystal growth rate were 2.1$\times$103/mm3 .min at 28$0^{\circ}C$ and 0.4${\mu}{\textrm}{m}$/min at 33$0^{\circ}C$ respectively. When the crystal volume fraction with crystal size $1.5mutextrm{m}$ was about 4% the (hardness and fracture toughness were about 117kg/mm2 and 6.0 MPa.mm1/2)respectively. The weight loss of crystallized glass in water was lower than parent glass($25^{\circ}C$ for 32 hrs : 0.03% 8$0^{\circ}C$ for 16 hrs : 0.1%) as 0.01% at $25^{\circ}C$, 0.03% at 8$0^{\circ}C$ for 16 hrs : 0.1%) at $25^{\circ}C$ 0.03% at 8$0^{\circ}C$ respectively. The IR-transmittance decreased with increasing crystal size and crystal volume fraction. The IR-transmittance of crystallized glass with the crystal size of $1.5mutextrm{m}$ (crystal volume fraction : 4%) presented 56% which was about 4% lower than that of parent glass.

  • PDF

Preparation and characterization of high transmittance and low resistance index matched transparent conducting oxide coated glass for liquid crystal on silicon panel

  • Jang, Chang-Young;Paik, Woo-Sung;Choi, Bum-Ho;Kim, Young-Back;Lee, Jong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1415-1417
    • /
    • 2009
  • High transmittance and low resistance index matched transparent conducting oxide (IMTCO) coated glass was prepared and characterized. IMTCO was deposited by RF magnetron sputtering with the thickness of 15nm and 90nm thick anti-reflection layer was evaporated. To modify surface to hydrophilic, in-situ plasma treatment was also performed. IMTCO coated glass exhibited 96.6% of transmittance in the wavelength range of 400~700nm which is relatively high value compared to commercially available IMTCO glass. The sheet resistance uniformity was measured to be 1.53%.

  • PDF

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).