• Title/Summary/Keyword: Glass melting

Search Result 321, Processing Time 0.031 seconds

Comparison of Polyphenylene Sulfide Composites Having Different Processing Temperatures and Glass Fibers

  • Jeong, Do Yeon;Yoo, Seung Yong;Jung, Chan-Gyu;Lee, Jaeyong;Kim, Sang Hoon;Lee, Pyeong-Chan;Lee, Hyun Wook;Ha, Jin Uk
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.308-312
    • /
    • 2019
  • Polyphenylene sulfide (PPS) is a well-known super engineering plastic with a high melting temperature (above 290℃). It is generally insoluble under regular conditions. Therefore, it can be used for replacing metallic materials. Many researchers are looking at the possibility of replacing aluminum in the engine compartment of an automobile. However, studies on PPS are not common as compared to conventional engineering plastics because only a few companies produce super engineering plastics. In this research, the material properties of PPS composites containing two different kinds of glass fibers and produced under different processing temperatures were investigated. The tensile strength of the PPS composites increased as the processing temperature increased. Although glass fibers with similar aspect ratios were compounded under the same processing condition, one of them yielded a higher mechanical strength.

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

DC Sputtering Process of 2-Dimensional Tungsten Disulfide Thin Films on Soda-Lime Glass Substrates (DC 스퍼터링을 이용한 소다라임 유리 기판상에 2차원 황화텅스텐 박막 형성 공정)

  • Ma, Sang Min;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.31-35
    • /
    • 2018
  • Tungsten disulfide($WS_2$) thin films were directly deposited by direct-current(DC) sputtering and annealed by rapid thermal processing(RTP) to materialize two-dimensional p-type transition metal dichalcogenide (TMDC) thin films on soda-lime glass substrates without any complicated exfoliation/transfer process. $WS_2$ thin films deposited at various DC sputtering powers from 80 W to 160W were annealed at different temperatures from $400^{\circ}C$ to $550^{\circ}C$ considering the melting temperature of soda-lime glass. The optical microscope results showed the stable surface morphologies of the $WS_2$ thin films without any defects. The X-ray photoelectron spectroscopy (XPS) results and the Hall measurement results showed stable binding energies of W and S and high carrier mobilities of $WS_2$ thin films.

Low & Intermediate Level Radioactive Waste Vitrification Using Plasma Arc Melting Technology

  • Min Byeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.482-496
    • /
    • 2003
  • effectiveness of the PAM graphite-electrode technology for the treatment of many types of low-level radioactive waste including : combustible material, solidified resins in cement, inorganic materials, steel, glass, and solidified boric acid cement. The objectives of PAM-200 evaluation were to verify that 1) the facility meets air emission regulations, 2) the facility can be safely operated when processing hazardous and radioactive materials and 3) satisfactory final waste forms can be produced. Results, derived from KAERI's(Korea Atomic Energy Research Institute) analyses for samples of vitrified product, scrubbing solution and offgas collected during test period, show that PAM-200 can treat radioactive wastes as well as hazardous wastes with toxic constituents and radionuclides contained in the offgas exiting from the stack to the environment controlled to be far lower than the limit regulated by air conservation law and atomic law.

Photochromism of Diarylethene-Doped Organic-Inorganic Hybrid Low Melting Glass (Diarylethene이 첨가된 저융점 유-무기 하이브리드 유리의 광변색 특성)

  • Kim, Ji-Kyung;Kim, Myeong-Jeong;Park, Sung-Je;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.28-32
    • /
    • 2006
  • Diarylethene in photochromic materials was doped in organic-inorganic hybrid low-melting glasses were synthesized through a nonaqueous acid-base reaction process, which consists of network units including a small number of bridging oxides. The organic phase is a dichlorodimethylsilane while the inorganic phase is a tin(II) chloride. Diarylethene was incorporated into the glasses without any degradation of its functionality. The open form of diarylenthene, which is converted from the opening one upon UV-irradiation, is change to the closed form visible light-irradiation. The rate constant of the photochemical reaction is $31.78\times10^{-3}s^{-1}$ with 400 W UV lamp irradiation.

Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes

  • Kim, Hye Min;Lee, Heon Sang
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • We prepared ethylene vinyl alcohol (EVOH)/graphene oxide (GO) membranes by solution casting method. X-ray diffraction analysis showed that GOs were fully exfoliated in the EVOH/GO membrane. The glass transition temperatures of EVOH were increased by adding GOs into EVOH. The melting temperatures of EVOH/GO composites were decreased by adding GOs into EVOH, indicating that GOs may inhibit the crystallization of EVOH during non-isothermal crystallization. However, the equilibrium melting temperatures of EVOH were not changed by adding GOs into EVOH. The oxygen permeability of the EVOH/GO (0.3 wt%) film was reduced to 63% of that of pure EVOH film, with 84% light transmittance at 550 nm. The EVOH/GO membranes exhibited 100 times better (water vapor)/(oxygen) selectivity performance than pure EVOH membrane.

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.

Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore (사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.180-188
    • /
    • 2013
  • The glass of E-glass fiber composition was fabricated by using refused coal ore which is obtained as by-product from Dogye coal mine in Samcheok. We used silica-alumina refused coal ore which has low carbon content relatively, and the amount of refused coal ore has been changed from 0 to 35 % in batch composition. E-glass was fabricated by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different refused coal ore composition of 0~35 %. We obtained a transparent and clear glass with high visible light transmittance value of 81~84%, thermal expansion coefficient of $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$ and softening point of $851{\sim}860^{\circ}C$. The glass fiber samples were also obtained through fiberizing equipment at $1150^{\circ}C$, and tested chemical resistance and tensile strength to evaluate the mechanical property as a reinforced glass fiber of composite material. As the result, we identified the properties of E-glass fiber by using refused coal ore are plenty good enough compare to that of normal E-glass without refused coal ore, and confirmed the possibility of refused coal ore as for the raw material of E-glass fiber.

Fabrication and characterization of boron free E-glass fiber compositions (붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Yo-Sep;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass fiber is the most widely used glass fiber for reinforced composite materials of aircrafts, automobiles and leisure equipments. But recently researches are being progressed to reduce boric oxide from 8 % to 0 (zero), as is called 'Boron free E-glass', because of increasing material cost, environmental problem, and improving chemical resistance and mechanical properties of E-glass fiber. In this study, we fabricated the bulk glass and fiber glass of 'Boron free E-glass (BF) compositions', and characterized thermal properties and optical properties. 'Boron free E-glass (BF)' was obtained by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different $Al_2O_3$ compositions 5~10 %. We obtained transparent clear glass with high visible light transmittance value of 81~86 %, and low thermal expansion coefficient of $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$ and softening point of $907{\sim}928^{\circ}C$. For the chemical resistance test of 'BF' fiber samples, we identified that the higher alumina contents gives the better corrosion resistance of glass fiber.

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.