• Title/Summary/Keyword: Glass ionomer cements

Search Result 105, Processing Time 0.019 seconds

In vitro cytotoxicity of four kinds orthodontic band cements (수종 치과 교정용 밴드 시멘트의 세포독성에 관한 실험적 연구)

  • Lee, Won-Chul;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.351-362
    • /
    • 2004
  • Orthodontic band cements are widely used in the fields of orthodontics, but they are commonly known as cytotoxic material. Within an oral cavity several ions and components are released from orthodontic band cements, thus causing inflammation or injury to the Periodontal tissue. Therefore, it is very important to estimate the biocompatibility of orthodontic band cements. The purpose of this study was to assess the cytotoxic effect of orthodontic band cements to HGF cells. A zinc phosphate cement, a glass ionomer, a resin modified glass ionomer, and compomer were used to evaluate three cytotoxicity assays: cell proliferation assay, MTT assay, and agar ovelay assay The results were as follows: 1. In the cell proliferation assay, Gl>ZPC, RMGI, RMGI24, GI24>compomer24, ZPC24, compomer>metal ring lined up in order of cytotoxicity 2. In the MTT assay, GI>ZPC, RMGI>GI24>ZPC24, compomer, metal ring, RMGI24, compomer24 lined up in order of cytotoxicity. 3. In the agar overlay test, GI>GI24, ZPC, ZPC24, RMGI>RMGI24, compomer, compomer24, metal ring lined up in order of cytotoxicity.

An Experimental Study on the Fracture and Shear Bonding Strength of Resin-modified Glass lonomer Cements (Resin-modified glass ionomer cements의 파절 및 저단결합강도에 관한 실험적 연구)

  • Kim, Jae-Gon;Yang, Cheol-Hee;An, Soo-Hyeon;Rho, Yong-Kwan;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.234-248
    • /
    • 1998
  • The purpose of this study was to compare the fracture and shear bonding strength of resin-modified glass ionomer cements with composite resin and conventional glass ionomer cement Three kinds of restorative materials including a composite resin (Z 100), a conventional glass ionomer cement(Fuji II), and resin- modified glass ionomer cements(Fuji II LC, Vitremer, Dyract and Compoglass) were investigated in this study. For measurement of fracture and shear bonding strength, disk samples of the materials were prepared and cylindrical samples of the materials were bonded the flat enamel and dentin surfaces according to manufactuer's instructions. All specimen were determinated by using an Instron testing machine with a crosshead speed of 1 mm/min. Then, each treated enamel and dentin surface was observed by SEM. The following results were obtained. 1. The bi-axial flexural strength of Z 100 was highest, and Fuji n LC, Vitremer, Dyract and Compoglass were significantly higher than Fuji n (P<0.05). 2. The shear bonding strength of Z 100 on the enamel and dentin surface was higher than other experimental groups except Fuji II LC(P<0.05). Fuji II LC was significantly higher than Fuji II (P<0.05), but in the case of Vitremer, Dyract and Compoglass were similar to Fuji II (P>0.05). 3. The shear bonding strength of Z 100 and Fuji II LC on the enamel surface were highly increased as compared with dentin surface (P<0.05), but in the case of Fuji II, Vitremer, Dyract and Compoglass were not different between enamel and dentin(P>0.05). 4. In the Z 100 and Fuji II LC, obvious etched enamel surface and exposed dentinal tubules according to remove of smear layer and smear plug were observed.

  • PDF

HARDNESS CHANGE OF LIGHT-ACTIVATED GLASS IONMER CEMENT WITH THICKNESS AND TIME (광경화형 글래스아이오노머 시멘트의 두께 및 시간경과에 따른 경도의 변화)

  • Lee, Kyoung-Jin;Oh, Won-Mann;Kim, Sun-Hun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.303-315
    • /
    • 1995
  • An adequate and homogeneous cure of light-activated restroative material is very important for improvement of marginal adaptation and prevention of marginal leakage, secondary caries and pulpal irritation as well as expressing natural physical property of that material. The purpose of this study was to evaluate the change of surface hardness and cure uniformity of light-activated glass ionomer cements. Restorative(Fuji II LC, Vitremer) and lining(Baseline VLC, Vitrebond) light-activated glass ionomer cements were investigated for this study. The surface hardness of the top and bottom surfaces and cure uniformity of each 1mm, 1.5mm, 2mm, 2.5mm & 3mm in the thickness of specimen were measured immediately, at 1 hour, 24 hours and 1 week after light activation. The surface hardness change and cure uniformity of all the specimens were measured by Knoop hardness tester. The results were as follows. 1. The surface hardness of top and bottom surfaces in all groups increased with time(p<0.01). 2. Both top and bottom surfaces hardness of Vitrebond group measured immediately after light-activation were significantly lower than those of the other groups(p<0.01). 3. The surface hardness of top and bottom surfaces of restorative light -activated glass ionomer cements was higher than those of lining materials at 1 week(p<0.10). 4. Surface hardness of Vitremer group decreased as the specimen thickness increased, except top and bottom surfaces hardness of the specimen at 1 week(p<0.01). There was no significant difference in the surface hardness of Fuji II LC with changes in the thickness except bottom surface hardness of specimen at 24 hours and 1 week (p>0.05). 5. Surface hardness of Vitrebond group significantly decreased as the specimen thickness increased(p<0.01). There was no significant difference in the surface hardness of Baseline VLC group with changes in the thickness except bottom surface hardness of specimen measured immediately after light -activation(p>0.05). 6. The hardness ratio of top against bottom surface in all groups decreased with time(p<0.05). 7. There was no significant difference in the hardness ratio of top against bottom surface with changes of the thickness except Vitrebond group, 24 hours and 1 week of Vitremer group and 1 week of Baseline VLC group (p>0.05). These results suggest that surface hardness of restorative ligh-activated glass ionomer cements were highter than those of lining light-activated materials. In all groups, the surface hardness and cure uniformity continuously increased with time.

  • PDF

Effect of various cleaners and mordants to bond strength of light curing glass ionomer cements to dentin (Smear layer 제거와 금속 이온 처리가 광중합형 글라스아이오노머와 상아질간의 결합강도에 미치는 영향)

  • Lee, Won-Seob;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.45-63
    • /
    • 1994
  • 128 freshly extracted human molars were used to study the interaction between dentinal smear layer removal with various agents, and the shear bond strength of a light cured glass ionomer cement to dentin. It was proposed that the removal of smear layers using acidic cleaners followed by incorporation of Fe mordant with dentin could enhanced the infiltration of monomer component in light curing glass ionomer cement and resulted in a high bond strength. For the first treatment process for removal of smear layers on the surfaces of dentin, 50 % citric acid, 10% maleic acid and 10 % phosphoric acid were used, and for the second treatment process, 15% ferric chloride, 6.8% ferric oxalate or 30% potassium oxalate were used. Distilled water was used as a control. After double sequential treatment on dentin, a light curing glass ionomer cement was bonded to dentin. After being immersed in water at 31'C for 24 hours, shear bond strengths were measured Instron testing machine(Model No.4202, USA). Surface changes were also observed using SEM (Hitachi, S-2300, Japan) after treatment process with each agents. The following conclusions were drawn : 1. Dentin surface cleaned with maleic acid and treated with ferric oxalate showed the highest bond strength with light curing glass ionomer cement. 2. Bond strengths of glass ionomer cement to dentin treated with maleic acid or citric acid were the highest, and that treated with phosphoric acid showed the lowest. 3. The effect of ferric oxalate on shear bond strength to dentin was always higher than that of ferric chloride. 4. The smear layers were clearly removed and the orifices of dentinal tubules were opened widely by the citric acid, maleic acid and phosphoric acid. 5. The orifices of dentinal tubules opened after using the first solution were closed with the treatment of ferric chloride. 6. The precipitate like crystals were formed on dentin surfaces and tubules, but a significant decrease in bond strength of glass ionomer cement to dentin surface treated with potassium oxalate.

  • PDF

The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • PURPOSE. The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS. The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS. Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION. The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.

THE EFFECT OF GLASS IONOMER CEMENT ON THE DOG'S EXPOSED DENTAL PULP (글라스 아이오노머 세멘트가 가견(家犬) 노출(露出) 치수조직(齒髓組織)에 미치는 영향(影響))

  • Kim, Jae-Han;Cho, Kyew-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 1987
  • The present study was designed to help elucidate the effect of glass ionomer cements on the exposed dental pulp by means of histologic examination. A total of 40 cavities of class V were prepared on the teeth of 4 dogs with exposure of 1mm in diameter on the bases of them. 20 cavities were filled with glass ionomer cement as the experimental group and the other 20 cavities were filled with zinc oxide eugenol cement as the control group. The dogs were sacrificed at one, two, three, and four weeks after filling, and the specimens were routinely prepared and stained with Hematoxylin-Eosin. The obtained microscopic findings were as follows: Inflammatory cell infiltrations were observed in control in 1 week, which decreased markedly with time. In all control groups, hemorrhage around exposed pulp tissue and coagulation change of pulp were observed. Secondary dentin formation and thickened predentin were observed in 4 week cases, and the recovery of pulp tissue was favorable on the whole. Inflammatory cell infiltration was observed in all GIC groups. Proliferation of blood vessel and congestion were observed with coagulation changes around the exposed pulp tissue. Secondary dentin formation and thickened predentin were observed in 3 weeks. In the experimental 4 week case, secondary dentin formation was evident. On the whole, pulpal irritation of glass ionomer cement was relatively severe. Recovery of pulp tissue in GIC groups was less favorable compared with that of ZOE groups.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

Sem Study of the Adhesion of New Glass Ionomer Cements to Dentin (글라스 아이오노모 시멘트의 상아질 접착에 관한 주사전자현미경적 연구)

  • Pak, Jay
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 1998
  • This study was performed to compare the bonding mechanism of glass ionomers. In this study, hybrid glass ionomers were used for restoration(Fuji II LC, GC, Japan) as the material of choice. Two different etching solutions were used in this study, 35% phosphoric acid and 10% polyacrylic acid. The effect of two different conditioners to dentin surface of a primary molar was studied and compared by using scanning electron microscope. Further, the interface of the dentin surface and the hybrid glass ionomers were examined.

  • PDF

REMINERALIZATION EFFECTS OF GLASS IONOMER RESTORATIONS ON ADJACENT INTERPOXIMAL-A MICROTOMOGRAPHIC STUDY (미세전산화 단층 촬영을 이용한 글라스 아이오노머 수복의 인접면 재광화 효과에 대한 연구)

  • Lee, Hyeok-Sang;Lee, Sang-Dae;Kim, Jung-Wook;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.474-480
    • /
    • 2004
  • The purpose of this in vitro study was to compare the remineralizing effects of three glass ionomer cements (high filled glass ionomer cement, compomer, resin modified glass ionomer cement) with resin composite (control group) on incipient interproximal caries, and to assess long-term change of remineralization effect, in each material, evaluated by microtomography. Proximal restoration was simulated with tooth specimen and Glass Ionomer Cements. And each of these groups was placed into a closed container with artificial saliva at $37^{\circ}C$ and pH 7.0 for a time period of thirty days with constant circulation. At the end of thirty and sixty days, tomographic images were taken from these specimens with micro CT scanner. Materials used in this study were as follows. Group 1: Fuji IX GP (GC Corp., Tokyo, Japan) Group 2: Vitremer (3M ESPE, St. Paul, Minn., USA) Group 3: F2000 (3M ESPE, St. Paul, Minn., USA) Group 4: Z250 (3M ESPE, St. Paul, Minn., USA) Using density-measuring program, the micro-density of carious lesions on the specimens were measured. The mean density changes of each group were compared to the other groups to evaluate the effect of remineralization. The results were as follows: 1. The lesion density of all groups increased. 2. The mean density increase of Group 1, 2, 3 were higher than that of Group 4 every month(p<0.05). 3. There were significant differences of density increase among glass ionomer group(Group 1, 2, 3).

  • PDF

Selection of Dental Cements (치과용 합착제의 선택)

  • Sung, Moo-Gyung
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.76-82
    • /
    • 1999
  • Zinc phosphate cement has long been the material of choice for permanent luting of cast restorations, and through many years of use has been considered effective to retain castings. However, cast restorations cemented with this material have been susceptible to secondary caries. Glass ionomer luting agents become available in the late 1970s. These material s, through release of fluoride, show considerable promise as a means of reducing secondary caries. Other favorable traits include significantly less disintegration in vivo than zinc phosphate cements, a film thickness comparable to that of zinc phosphate cement, and adhesion to tooth structure. Compomer materials were created in 1993 as a filling material for deciduous teeth, cervical lesions, and class III cavities. In the meantime, compomer have been developed as chemical hardening cements for cast gold restorations. The aim of this paper is to review the articles on luting cements to help the choice of dental cements.

  • PDF