• Title/Summary/Keyword: Glass Thickness

Search Result 1,082, Processing Time 0.027 seconds

Effect of the difference in spectral outputs of the single and dual-peak LEDs on the microhardness and the color stability of resin composites (Single-peak LED와 dual-peak LED의 출력 파장 차이가 복합 레진 미세 경도와 색 안정성에 미치는 영향)

  • Park, Hye-Jung;Son, Sung-Ae;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • Objectives: To determine the effect of the spectral output of single and dual-peak light emitting diode (LED) curing lights on the microhardness and color stability of commercial resin composites formulated with camphorquinone and alternative photoinitiators in combination. Materials and Methods: Three light-polymerized resin composites (Z100 (3M ESPE), Tetric Ceram (Ivoclar Vivadent) and Aelite LS Posterior (Bisco)) with different photoinitiator systems were used. The resin composites were packed into a Teflon mold (8 mm diameter and 2 mm thickness) on a cover glass. After packing the composites, they were light cured with single-peak and dual-peak LEDs. The Knoop microhardness (KHN) and color difference (${\Delta}E$) for 30 days were measured. The data was analyzed statistically using a student's t-test (p < 0.05). Results: All resin composites showed improved microhardness when a third-generation dual-peak LED light was used. The color stability was also higher for all resin composites with dual-peak LEDs. However, there was a significant difference only for Aelite LS Posterior. Conclusions: The dual-peak LEDs have a beneficial effect on the microhardness and color stability of resin composites formulated with a combination of camphorquinone and alternative photoinitiators.

For High Aspect Ratio of Conductive Line by Using Alignment System in Micro Patterning of Inkjet Industry (화상정렬 시스템을 이용한 잉크젯 반복인쇄기술)

  • Park, Jae-Chan;Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.154-154
    • /
    • 2006
  • Samsung Electro Mechanics ink jet has developed ultra high resolution alignment system. The alignment system has been developed for repeatable printing of conductive ink. The resolution of alignment system is 0.5um and the velocity of printing working plate is 1.5m/s. So far repeated printing results included sintering process have over 30um of drop mislocation data. In order to improve line thickness and conductivity of metal line, we need to develop the higher mechanical accurate align system. On the demand, this developed align system has under $1{\sim}2{\mu}m$ mispositioning performance and can measure of mechanical accuracy of inkjet printer, as well as the straightness of jetted drop from inkjet head. There is no kinds limit of substrate and ink to use SEM alignment system. By using this alignment system, we progress two experiment of reiterate printing drop and making conductive line on the glass and photo paper. Optical microscope and 3D profiler has been used for measurement of printed ink.

  • PDF

Fabrication of Plasma Resistant Y2O3-Al2O3-SiO2 Coating Ceramics by Melt-Coating Method (용융코팅법에 의한 내플라즈마성 Y2O3-Al2O3-SiO2계 코팅 세라믹스 제조)

  • Park, Eui Keun;Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.359-368
    • /
    • 2020
  • This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3-Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 ㎛. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.

Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate (열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해)

  • 권회진;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.314-325
    • /
    • 2000
  • Thermal degradation of thermoplasitc polyurethane modified polycarbonate has been investigated by means of DSC, GPC and FT-IR techniques. The polyurethanes used in this study are TPU-35 and TPU-53 containing 35.5 and 53.4 wt% of hard segments, respectively. The more content of hard segment, the higher the glass transition temperature (T$_{g}$) of TPU was observed. On the other hand, the T$_{g}$ of the TPU modified PC decreased with the content of TPU and the annealing temperature regardless of the hard segment contents. The latter behavior nay arise from the thermal degradation of TPU upon annealing process: the observed thermal degradation temperatures were at 240 and 25$0^{\circ}C$ for the PC/TPU-35 and PC/TPU-53, respectively. The molecular weight, molecular weight distribution and viscosity agree well with the DSC measurement, which implicates a thermal degradation of TPU. In addition, thermal stability of the TPU modified PC linearly decreased with an incorporation of TPU. Transesterification or any interaction was not observed using FT-IR: the evidence was no frequency shift or any variance betwere the carbonyl stretching and NH group. For the specimens prepared below the degradation temperature, the enhancement of the thickness dependent impact strength of the PC/TPU blend was observed, and the morphology of the two blends was compared.d.

  • PDF

Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer (전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향)

  • Ahn, Hee-Jun;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.742-748
    • /
    • 2005
  • Transparent conductive indium-tin oxide (ITO) films are widely used as transparent electrodes for flat panel displays. Many of the ITO films for practical use have been prepared by magnetron sputtering, chemical vapor deposition, electron beam evaporation, etc. An oxide target composed of 10 wt% $SnO_2$ and 90 wt% $In_2O_3$ has been deposited onto polycyclic olefin polymer (POP) substrate by electron beam evaporation. POP has a higher glass transition temperature ($Tg=330^{\circ}C$) than other conventional polymers. In this study, the effects of substrate temperature and the $O_2$ introduction flow rate were investigated in terms of physical, electrical and optical properties of deposited ITO films. We investigated the effects of processing variables such as substrate temperature and the oxygen introduction flow rate. The best electrical and optical properties of deposited ITO films obtained from this study were electrical resistivity value of ${\rho}=1.78{\times}10^{-3}{\Omega}{\cdot}cm$ and optical transmittance of about 85% at 8 sccm (Standard Cubic Centimeter per Minute) $O_2$ introduction flow rate, $5{\AA}/sec$ deposition rate, $1000{\AA}$ deposited ITO thickness and $200^{\circ}C$ substrate temperature.

Radiation Protective Effect of the Thyroid Gland Using Bolus Protector in the Dental Cone Beam Computed Tomography (치과 콘빔 전산화단층검사 시 보루스 차폐체를 이용한 갑상선의 방사선 차폐효과)

  • Lee, Tae Hui;Jeong, Seung Hun;Kim, Dong Woo;Park, Myeong Hwan;Kim, Tae-Hyung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • In order to minimize the radiation exposure dose of the thyroid site at dental cone-beam computer tomography, a protector using a Bolus was prepared, and the radiation shielding effect and the appropriateness of the image were evaluated. Using a dental cone-beam computed tomography (CBCT), a glass dosimeter was attached to the left and right sides of the thyroid for a dental radiation phantom, and the radiation dose was measured. The absorbed dose for each shield was measured by another method to 10 mm, 20 mm, and 30 mm-thickness, respectively. Eight evaluators evaluated whether or not the medical image is appropriate. When using a 30 mm Bolus shield at the left thyroid site, the resulting value is reduced by an average of $342.67{\mu}Gy$ by 20.7% from the average value of $431.22{\mu}Gy$ measured without using a Bolus shield, the right thyroid site In the case of using 30 mm Bolus shield, it showed a dose reduction effect of 21.9% with an average of $424.56{\mu}Gy$. The adequacy of the medical image was judged to be usable by both evaluators. In conclusion, the dental cone-beam computerized tomography can be used as a useful shielding material because it has a radiation shielding effect and it is possible to treat the diagnosis of the bolus protector in the thyroid without any obstruction shade in order to minimize the radiation dose.

Inhibition Effect of Bacillus subtilis on 365 nm UV-LED Irradiation According to Packaging Materials (포장재 조건에 따른 365 nm UV-LED 조사의 Bacillus subtilis 생육 억제 효과)

  • Lee, Da-Hye;Jeong, So-Mi;Xu, Xiaotong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2019
  • The use of ultraviolet (UV) spectroscopy for foods is known to have a microbial inhibitory effect. UV-A having a longer wavelength than UV-C can be used for continuous or intermittent UV irradiation of food stored in containers or packages. Because UV-LED can be used effectively at a low price, this study reported the effect of UV-A 365 nm-LED on inhibiting Bacillus subtilis in accordance with the packaging conditions employed in daily use. The packaging materials were linear low-density polyethylene (LLD-PE), nylon/low density polyethylene (LDPE), polystyrene, and glass. When all packaging materials were treated with 365 nm UV-LED, B. subtilis was observed to remain inactive for 30-60 min. Further, compared with the control (-log 5), the survival rate of B. subtilis was -log 2.0-2.5 for nylon/LDPE and -log 2.58-3.61 for LLD-PE. These packaging materials showed an excellent inhibitory effect regardless of their thickness. Typically, a decrease in the viable cell count of more than 3 log indicates a 99.9% bactericidal effect. These results suggest that 365 nm UV-LED permeated the packaging material and inhibited bacterial growth.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Lead-free inorganic metal perovskites beyond photovoltaics: Photon, charged particles and neutron shielding applications

  • Srilakshmi Prabhu;Dhanya Y. Bharadwaj;S.G. Bubbly;S.B. Gudennavar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1061-1070
    • /
    • 2023
  • Over the last few years, lead-free inorganic metal perovskites have gained impressive ground in empowering satellites in space exploration owing to their material stability and performance evolution under extreme space environments. The present work has examined the versatility of eight such perovskites as space radiation shielding materials by computing their photon, charged particles and neutron interaction parameters. Photon interaction parameters were calculated for a wide energy range using PAGEX software. The ranges of heavy charged particles (H, He, C, N, O, Ne, Mg, Si and Fe ions) in these perovskites were estimated using SRIM software in the energy range 1 keV-10 GeV, and that of electrons was computed using ESTAR NIST software in the energy range 0.01 MeV-1 GeV. Further, the macroscopic fast neutron removal cross-sections were also calculated to estimate the neutron shielding efficiencies. The examined shielding parameters of the perovskites varied depending on the radiation type and energy. Among the selected perovskites, Cs2TiI6 and Ba2AgIO6 displayed superior photon attenuation properties. A 3.5 cm thick Ba2AgIO6-based shield could reduce the incident radiation intensity to half its initial value, a thickness even lesser than that of Pb-glass. Besides, CsSnBr3 and La0.8Ca0.2Ni0.5Ti0.5O3 displayed the highest and lowest range values, respectively, for all heavy charged particles. Ba2AgIO6 showed electron stopping power (on par with Kovar) better than that of other examined materials. Interestingly, La0.8Ca0.2Ni0.5Ti0.5O3 demonstrated neutron removal cross-section values greater than that of standard neutron shielding materials - aluminium and polyethylene. On the whole, the present study not only demonstrates the employment prospects of eco-friendly perovskites for shielding space radiations but also suggests future prospects for research in this direction.

Fabrication of 3-Step Light Transmittance-variable Smart Windows based on λ/2 Retardation Film (λ/2 Retardation Film을 이용한 3단계 투과율 가변 스마트윈도우 제작)

  • Il-Gu Kim;Ho-Chang Yang;Young-Min Park;Yo-Han Suh;Young Kyu Hong;Seung Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.78-82
    • /
    • 2023
  • A fabrication of smart windows with controllable visible light transmittance in three steps by using λ/2 retardation films based on a reactive mesogen (RM) material and polarizing films is demonstrated. The phase retardation films with a Δn·d value of λ/2 (λ: wavelength) convert the direction of a traveling light to the optical axis of the film symmetrically. In this work, the retardation characteristics according to the RM thickness were evaluated and henceλ/2 phase retardation film can be fabricated. The phase retardation film with Δn·d of 276.1 nm, which is close to λ/2 (=275 nm @550 nm), was fabricated. The light transmittance of a smart window with the structure of (polarizing film)/(glass)/(alignment layer)/(λ/2 retardation film) was measured in the transmission mode, half mode and blocking mode. The evaluation results show that the transmittance of the smart window can be controlled in three steps with 35.8%, 27.8%, and 18.2% at each mode, respectively. In addition, by fabricating a smart window with a size of 15×200 mm2, the feasibility of use in various fields such as buildings and automobiles was verified.