• Title/Summary/Keyword: Glass Remote Phosphor

Search Result 8, Processing Time 0.029 seconds

Optimization of Phosphor Contents and Heat-treatment Temperature in White LED Package with Glass Remote Phosphor Structure (Glass Remote Phosphor 구조를 갖는 백색 LED 패키지의 형광체 함량과 열처리 온도 최적화)

  • Jeong, Hee-Suk;Hong, Seok-Gi;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.30-38
    • /
    • 2016
  • In this research, a 6W white LED package with a Glass Remote Phosphor was developed to improve the life of an LED package. The Glass Remote Phosphor was fabricated by the Phosphor in Glass (PiG) method, wherein phosphor YAG:Ce was mixed with glass frit and then heat treated. A paste with 75wt.% of a phosphor substance and 25wt.% glass frit was coated on a glass substrate two times using the screen-printing technique and heat-treated at $800^{\circ}C$ ; this structure gave a luminous efficacy of 136.1lm/W, color rendering index of 74Ra, and color temperature of 5,342K, thus satisfying the requirements as a light source for lighting. Moreover, an IES LM-80 accelerated life test was conducted on the same LED package for 6,000h in order to estimate the L70 lifetime based on IES TM-21. The results showed guaranteed lifetimes of 213,000h at $55^{\circ}C$, 245,000h at $85^{\circ}C$, and 209,000h at $95^{\circ}C$.

Optical Properties of Color Conversion Lens for White LED Using B2O3-Bi2O3-ZnO Glass (B2O3-Bi2O3-ZnO계 유리를 이용한 백색 LED용 색변환 렌즈의 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deuk-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.614-619
    • /
    • 2013
  • Recently, remote phosphor is reported for white LED enhancing of phosphor efficiency compared with conventional phosphor-based W-LED. In this study, Remote phosphor was produced by screen printing coating on glass substrate with phosphor contents rated paste and heat treatment. The paste consists of phosphor, lowest softening glass frit and organic binders. Remote phosphor can be well controlled by varying the phosphor content rated paste. After mounting remote phosphor on top of blue LED chip, CCT, CRI, and luminance efficiency were measured. The measurement results showed that CCT, CRI, and luminance efficiency were 6,645, 68, and 1,16l m/W in phosphor 80 wt.% remote phosphor sintered at $600^{\circ}C$.

Optical Properties as Process Condition of Color Conversion Lens Using Low-softening Point Glass for White LED (백색 LED용 저 연화점 유리를 이용한 색 변환 렌즈의 제조 조건에 따른 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Recently, remote phosphors have been reported for application to white LEDs to provide enhanced phosphor efficiency compared with conventional phosphor-based white LEDs. In this study, a remote phosphor was produced by coating via screen printing on a glass substrate with different numbers of phosphor coating. The paste consists of phosphor, lowest softening glass frits, and organic binders. The remote phosphor could be well controlled by varying the phosphor content rated paste. After mounting the remote phosphor on top of a blue LED chip, CCT, CRI, and luminance efficiency were measured and values of 5300 K, 62, and 117 lm/W were respectively obtained in the 80 wt% phosphor with 3 coating layers sintered at $800^{\circ}C$.

Evaluation of White LED Package Characteristics in Remote Phosphor Structure Depending on Phosphor Coatings (형광체 코팅에 따른 Remote Phosphor 구조의 백색 LED 패키지 특성 평가)

  • Jeong, Hee-Suk;Lee, Jung-Geun;Kang, Han-Lim;Hwang, Myung-Keun;Lee, Mi-Jae;Kim, Jin-Ho;Chae, Yoo-Jin;Lee, Young-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.330-334
    • /
    • 2013
  • We developed a package of remote phosphor structure having blue LED chips and phosphors physically separated, and the characteristics were evaluated according to different classifications of phosphor coatings. Remote phosphor was produced by screen printing coating on glass substrate with phosphor content rated paste and heat treatment. After mounting Remote phosphor, which has been classified according to number of coatings, on top of blue LED chips, luminous flux, luminous efficacy, CCT and CRI were measured. The measurement results showed the most suitable characteristics of white LED package as a general light source when the content rate of phosphor in Remote phosphor was 80 wt.% with 3 layers of coatings and thickness over $12{\mu}m$.

Fabrication of Mixed and Patterned Type of Remote Phosphors by Screen Printing Process and their Optical Properties

  • Kim, Byung-Ho;Hwang, Jonghee;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.381-385
    • /
    • 2016
  • Recently, white LEDs, especially, warm white LEDs have been intensively investigated due to outstanding optical properties, long term stability and low power consumption. In this study, mixed type and patterned type of remote phosphors were prepared by screen printing process employing green and red phosphor. Each type of remote phosphor exhibited distinctive photoluminescence spectrum. For example, the mixed type of remote phosphor exhibited unique spectrum, while the patterned type showed expectable spectrum depending on the concentration of phosphors. This indicates that a small amount of red phosphor dramatically reduced the green photoluminescence in the case of mixed-type remote phosphor, whereas the effect was negligible in the patterned-type remote phosphor. The possibility of undesirable chemical reaction was further investigated by using scanning electron microscopy and X-ray diffraction.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED (백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향)

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

Optical Properties as Coating Process of Complex Phosphor for White LED (백색 LED용 복합형광체의 코팅공정에 따른 광 특성)

  • Lee, Hyo-Sung;Kim, Byung-Ho;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • In this study, we fabricated high quality color conversion component with green/red phosphor and low melting glass frit. The color conversion component was prepared by placing the green and red phosphor layer on slide glass via screen printing process. The properties of color conversion component could be controlled by changing coating sequence, layer thickness and heat treatment temperature. We discovered that optical properties of color conversion component were generally determined by the lowest layer. On the other hand, the heat treatment temperature also affected to correlated color temperature (CCT) and color rending index (CRI). The color conversion component with a green (lower) - red (upper) layer which was sintered at $550^{\circ}C$ showed the best optical properties: CCT, CRI and luminance efficacy were 3340 K, 78, and 56.5 lm/w, respectively.