• 제목/요약/키워드: Glass Lens Mold

검색결과 69건 처리시간 0.033초

순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구 (A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process)

  • 장성호;이영민;신광호;윤길상;정우철;정태성;허영무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

비구면 유리 렌즈 금형의 열응력 해석 (Thermal stress analysis for an aspheric glass lens mold)

  • 이영민;장성호;허영무;신광호;윤길상;정태성
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.

GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구 (A study on the thermal deformation of 3 cavity GMP mold for glass lens)

  • 장성호;허영무;신광호;정태성
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF

초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구 (A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core)

  • 정상화;차경래;김현욱;이봉주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구 (A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core)

  • 정상화;차경래;김현욱;이봉주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

초경합금의 초정밀 연삭특성에 관한 연구 (A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide)

  • 정상화;차경래;김현욱;김종태;이봉주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1737-1740
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ) (Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ))

  • 이학석;이동길;박종락;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

Transcription Characteristics of Mold Surface Topography in the Molding of Aspherical Glass Lenses

  • Cha, Du-Hwan;Hwang, Yeon;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.213-217
    • /
    • 2009
  • The transcription characteristics of the mold surface in the molding of aspherical glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. For the form topography, the molded lens showed a transcription ratio of 93.4% against the mold, which is obtained by comparing the form error (PV) values of the mold and the molded lens. The transcription characteristics of the roughness topography were ascertained by bearing ratio analysis.