• Title/Summary/Keyword: Glass Fiber Composites

Search Result 462, Processing Time 0.034 seconds

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

A Study on Design of 500W Class High Efficiency Horizontal Axis Wind Turbine System(HAWTS) Blade Using Natural Fiber Composites (친환경 소재를 적용한 500W급 고효율 수평축 풍력터빈 블레이드 설계에 관한 연구)

  • Park, Gwanglim;Kong, Changduk;Lee, Haseung;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.104-111
    • /
    • 2015
  • In this work, a structural design on 500W class horizontal axis wind turbine blade using natural-fibre composite is performed. The structural design result of flax composite blade is compared with the result of glass composite blade. The structural design of the wind turbine blade is carried out using the simplified methods such as the netting rule and the rule of mixture. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation and buckling analyses using the commercial FEM. The structural test of the manufactured prototype blade was performed to confirm the structural analysis results including strains, natural frequencies and deformations. According to the comparison results, it was confirmed that the analysis results are well agreed with the experimental results.

Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 복합재의 저온 영역 하에서 정적 강도 변화)

  • Eom, Su-Hyeon;Dutta, Piyush K.;Gwon, Sun-Cheol;Kim, Guk-Jin;Kim, Yun-Hae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.7-12
    • /
    • 2003
  • When the wind turbine is used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this paper is to test the durability of the blade for wind turbine. It is necessary to select the most comfortable materials and fabrication processes for more stable wind turbine blade in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric and glass fiber dry fabric) at different test temperature($24^{\circ}$, $-30^{\circ}$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

Finite Element Method Based Structural Analysis of Z-Spring with CF&GF Hybrid Prepreg Lamination Patterns (유한요소해석을 이용한 CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 구조해석)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.60-67
    • /
    • 2021
  • Recently, research attention has been focused on vibration-free vehicles to transport small numbers of expensive electronic products. Vibration-free vehicles can be used to transport expensive test equipment or semiconductors, mainly produced in the domestic IT industry, and can serve as a readily available transportation system for short driving distances due to the increased efficiency on narrow national highways. This study was aimed at developing a Z-Spring to minimize the vibration by installing an air spring instead of the plate spring applied to conventional freight cars and to prevent the damage of the loaded cargo from the shock occurring during movement. The mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber (CF) and glass fiber (GF) prepreg were derived, and ANSYS ACP PrepPost analyses were performed. It was observed that in the case of hybrid composites, the total deformation and equivalent stress are higher than that of CFRP; however, in terms of the unit cost, the hybrid Z-Spring is more inexpensive and durable compared to the GF.

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Mechanical Properties of GMT-Sheet on Press joined Molding (프레스 접합성형 GMT-Sheet의 기계적 성질)

  • Kim, H.;Choi, Y.S.;Lee, C.H;Han, G.Y.;Lee, D.G
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.157-163
    • /
    • 2000
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and joining problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. In this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this ; joining efficiency of GMT-Sheet, increases as lap joint length L increases. Increase of compression ration cause decrease of joining efficiency after of GMT-Sheet, joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We have better design the structure so as not occur to stress centralization on the joining part.

  • PDF

A Study on the Structural Design of Effective Composite Joint and Light Weight in Body Floor (Body Floor의 복합재 접합방식 및 경량화 설계에 관한 연구)

  • Kim, Hong Gun;Oh, Sang Yeob;Kim, Kwang Choul;Kim, Hyun Woo;Kwac, Lee Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.920-925
    • /
    • 2012
  • A study of vehicle weight lightening has been progressed to reduce the fuel consumption. In this paper, the body floor in an EV (Electric Vehicle) bus has been applied by composites as CFRP and GFRP. In order to analyse a various reliability and safety, an experiment and FEM analysis was carried out to obtain weight lightening. Especially, the joint. An effective design is obtained through an experiment as well as FEM analysis. Results of stress analysis of GFRP material showed twice as much displacement than those of CFRP material. Among three kinds of joint methods, the bond joint method is occurred to a substantial shape change in the body and floor. It is found that the rivet joints are fairly suitable for stress sustaining capability.

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF

Study on the Defects Detection in Composites by Using Optical Position and Infrared Thermography

  • Kwon, Koo-Ahn;Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Choi, Won Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.130-137
    • /
    • 2016
  • Non-destructive testing methods for composite materials (e.g., carbon fiber-reinforced and glass fiber-reinforced plastic) have been widely used to detect damage in the overall industry. This study detects defects using optical infrared thermography. The transient heat transport in a solid body is characterized by two dynamic quantities, namely, thermal diffusivity and thermal effusivity. The first quantity describes the speed with thermal energy diffuses through a material, whereas the second one represents a type of thermal inertia. The defect detection rate is increased by utilizing a lock-in method and performing a comparison of the defect detection rates. The comparison is conducted by dividing the irradiation method into reflection and transmission methods and the irradiation time into 50 mHz and 100 mHz. The experimental results show that detecting defects at 50 mHz is easy using the transmission method. This result implies that low-frequency thermal waves penetrate a material deeper than the high-frequency waves.