• Title/Summary/Keyword: Glass Fiber Composites

Search Result 461, Processing Time 0.021 seconds

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Optimum Design for Iso-strain Structure of Hybrid Laminated Composite (하이브리드 적층복합재료에서의 Iso-Strain 구조설계의 최적화)

  • 강선교;이경우;강태진
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • The optimum design of hybrid laminated composites for iso-strain structure has been studied by controling fiber orientations and thicknesses of each layer. Fiber orientations and thicknesses of each layer for iso-strain structure were designed. Combining the laminates of each layer of different reinforcing material, the constitutions of hybrid laminated composite for iso-strain structure were obtained. All these calculations were formed on computer systems, automatically for the hybridization. Using the data of some specific laminated composite such as glass and aramid reinforced composites, the constitutions of hybrid laminated composites for iso-strains structure were designed and verified by lamination theory. The strains of each layer of hybrid laminated composites are calculated and they turned out to be good agreements with the results obtained lamination theory.

  • PDF

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

The Study on the Material Behavior of Hybrid Composites (Hybrid 열가소성 복합재료의 재료거동에 관한 연구)

  • 조현철;이중희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.67-70
    • /
    • 2000
  • This study was performed to investigate the material behavior of hybrid thermoplastic composites contained glass fiber and calcium carbonate. The composite was prepared with each combination ratio of calcium carbonate, and the content of glass fiber was fixed with 10% by weight. In order to investigate the material behavior for various combination ratio, tension test, flexural test, and impact test were performed. Microscopic observation were conducted to examine the fractured surface of specimen for tension test. And the material behavior of the hybrid thermoplastic composite immersed in salt water with definite time was investigated.

  • PDF

Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus- (복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 -)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • During fatigue loading of composite materials, damage accumulation can be monitored by measuring their material properties. In this study, fatigue modulus is used as the damage index. Fatigue life of composite materials may be predicted analytically using damage models which are based on fatigue modulus and resultant strain. Damage models are propesed as funtions of applied stress level, number of fatigue cycle and fatigue life. The predicted life was comparable to the experimental result obtained using E-glass fiber reinforced epoxy resin materials and pultruded glass fiber reinforce polyester composites under two-stress level fatigue loading.

  • PDF

A Study on the Crack Growth Behavior and Fracture Criterion of Glass/Epoxy Composites (Glass/Epoxy 복합재료의 파괴조건 및 균열진전거동)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1681-1690
    • /
    • 1992
  • The effects of the stress ratio and the fiber orientation(0.deg./90.deg. and .+-.45.deg.) to the load direction on the fracture behavior of the glass/epoxy plain woven composites were studied. The tests were carried out using compact tension specimens under both static and fatigue loading. The values of $k_{a}$ obtained from the energy release rate are independent of notch depth(a/w=0.2~0.6) for the 0.deg./90.deg. specimens, but decreases with an increase in a/w for the .+-.45.deg. specimens. And $k_{q}$ has higher values than $k_{ASTM}$ has been evaluated by the ASTM E399 test procedure. It is shown in the relation between fatigue crack growth rate da/dN and stress intensity factor range .DELTA.K using modified shape correction factor that da/dN decreases with a decrease in stress ratio and is lower for .+-..deg. specimens than for 0.deg./90.deg. These phenomena can be explained by the crack deflection to the load direction.n.n.

The effects of reinforcements on the tool wear during cutting fiber-reinforced plastics (섬유강화 복합재료의 가공시 강화재가 공구마모에 미치는 영향)

  • 정용운;김주현;박주승;좌성훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.208-212
    • /
    • 1999
  • In the use of glass fiber reinforced plastics(GFRP), cutting is often necessary. But the most of past studies have been interested in the effect of fiber orientation on tool wear. In this study, the effects of fiber contents on tool wear were investigated experimentally. By proper selection of cutting tool, the variables are cutting speed and fiber contents of 10, 20, 30wt% with fixed feed rate and depth of cut.

  • PDF

Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns (CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.